BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Block diagonal form with overlap"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    A recursive bipartitioning algorithm for permuting sparse square matrices into block diagonal form with overlap
    (Society for Industrial and Applied Mathematics, 2013) Acer, S.; Kayaaslan, E.; Aykanat, Cevdet
    We investigate the problem of symmetrically permuting a square sparse matrix into a block diagonal form with overlap. This permutation problem arises in the parallelization of an explicit formulation of the multiplicative Schwarz preconditioner and a more recent block overlapping banded linear solver as well as its application to general sparse linear systems. In order to formulate this permutation problem as a graph theoretical problem, we define a constrained version of the multiway graph partitioning by vertex separator (GPVS) problem, which is referred to as the ordered GPVS (oGPVS) problem. However, existing graph partitioning tools are unable to solve the oGPVS problem. So, we also show how the recursive bipartitioning framework can be utilized for solving the oGPVS problem. For this purpose, we propose a left-to-right bipartitioning approach together with a novel vertex fixation scheme so that existing 2-way GPVS tools that support fixed vertices can be effectively and efficiently utilized in the recursive bipartitioning framework. Experimental results on a wide range of matrices confirm the validity of the proposed approach. © 2013 Society for Industrial and Applied Mathematics.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    A recursive graph bipartitioning algorithm by vertex separators with fixed vertices for permuting sparse matrices into block diagonal form with overlap
    (2011) Acer, Seher
    Solving sparse system of linear equations Ax=b using preconditioners can be effi- ciently parallelized using graph partitioning tools. In this thesis, we investigate the problem of permuting a sparse matrix into a block diagonal form with overlap which is to be used in the parallelization of the multiplicative schwarz preconditioner. A matrix is said to be in block diagonal form with overlap if the diagonal blocks may overlap. In order to formulate this permutation problem as a graph-theoretical problem, we introduce a restricted version of the graph partitioning by vertex separator problem (GPVS), where the objective is to find a vertex partition whose parts are only connected by a vertex separator. The modified problem, we refer as ordered GPVS problem (oGPVS), is restricted such that the parts should exhibit an ordered form where the consecutive parts can only be connected by a separator. The existing graph partitioning tools are unable to solve the oGPVS problem. Thus, we present a recursive graph bipartitioning algorithm by vertex separators together with a novel vertex fixation scheme so that a GPVS tool supporting fixed vertices can effectively and efficiently be utilized. We also theoretically verified the correctness of the proposed approach devising a necessary and sufficient condition to the feasibility of a oGPVS solution. Experimental results on a wide range of matrices confirm the validity of the proposed approach.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback