A recursive bipartitioning algorithm for permuting sparse square matrices into block diagonal form with overlap

Date

2013

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

SIAM Journal on Scientific Computing

Print ISSN

1064-8275

Electronic ISSN

Publisher

Society for Industrial and Applied Mathematics

Volume

35

Issue

1

Pages

C99 - C121

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
2
views
28
downloads

Series

Abstract

We investigate the problem of symmetrically permuting a square sparse matrix into a block diagonal form with overlap. This permutation problem arises in the parallelization of an explicit formulation of the multiplicative Schwarz preconditioner and a more recent block overlapping banded linear solver as well as its application to general sparse linear systems. In order to formulate this permutation problem as a graph theoretical problem, we define a constrained version of the multiway graph partitioning by vertex separator (GPVS) problem, which is referred to as the ordered GPVS (oGPVS) problem. However, existing graph partitioning tools are unable to solve the oGPVS problem. So, we also show how the recursive bipartitioning framework can be utilized for solving the oGPVS problem. For this purpose, we propose a left-to-right bipartitioning approach together with a novel vertex fixation scheme so that existing 2-way GPVS tools that support fixed vertices can be effectively and efficiently utilized in the recursive bipartitioning framework. Experimental results on a wide range of matrices confirm the validity of the proposed approach. © 2013 Society for Industrial and Applied Mathematics.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)