Browsing by Subject "Bandpass filters"
Now showing 1 - 14 of 14
- Results Per Page
- Sort Options
Item Open Access All-fiber all-normal dispersion laser with a fiber-based Lyot filter(Optical Society of America, 2010-04-15) Özgören, K.; Ilday, F. Ö.We propose the use of a short section of polarization-maintaining fiber as a birefringent medium to construct an all-fiber Lyot filter inside the cavity of a fiber laser. This allows mode-locked operation of an all-fiber all-normal dispersion Yb-fiber oscillator without the use of a bulk bandpass filter and using standard components. Moreover, filter bandwidth and modulation depth is easily controlled by changing the length and splice angle of the polarization-maintaining-fiber section, leading to an adjustable filter. At mode-locked operation, the 30% output fiber port delivers 1nJ pulses that are dechirped to 230 fs duration.Item Open Access Boosted LMS-based piecewise linear adaptive filters(IEEE, 2016) Kari, Dariush; Marivani, Iman; Delibalta, İ.; Kozat, Süleyman SerdarWe introduce the boosting notion extensively used in different machine learning applications to adaptive signal processing literature and implement several different adaptive filtering algorithms. In this framework, we have several adaptive constituent filters that run in parallel. For each newly received input vector and observation pair, each filter adapts itself based on the performance of the other adaptive filters in the mixture on this current data pair. These relative updates provide the boosting effect such that the filters in the mixture learn a different attribute of the data providing diversity. The outputs of these constituent filters are then combined using adaptive mixture approaches. We provide the computational complexity bounds for the boosted adaptive filters. The introduced methods demonstrate improvement in the performances of conventional adaptive filtering algorithms due to the boosting effect.Item Open Access Effects of linear filter on stability and performance of human-in-the-loop model reference adaptive control architectures(ASME, 2017) Yousefi, Ehsan; Demir, Didem Fatma; Sipahi, R.; Yücelen, T.; Yıldız, YıldırayModel reference adaptive control (MRAC) can effectively handle various challenges of the real world control problems including exogenous disturbances, system uncertainties, and degraded modes of operations. In human-in-the-loop settings, MRAC may cause unstable system trajectories. Basing on our recent work on the stability of MRAC-human dynamics, here we follow an optimization based computations to design a linear filter and study whether or not this filter inserted between the human model and MRAC could help remove such instabilities, and potentially improve performance. To this end, we present a mathematical approach to study how the error dynamics of MRAC could favorably or detrimentally influence human operator's error dynamics in performing a certain task. An illustrative numerical example concludes the study.Item Open Access Filterless all-normal dispersion fiber laser(IEEE, 2009) Özgören, Kıvanç; İlday, F. ÖmerWe demonstrate mode-locked operation of an allnormal dispersion Yb-fiber oscillator without the use of bulk bandpass filter. A section of PM-fiber incorporated into the cavity acts as a filter, paving the way towards an all-fiber oscillator based on off-the-shelf components. © 2009 IEEE.Item Open Access Grating based plasmonic band gap cavities(Optical Society of American (OSA), 2009-08) Şenlik, S. Seçkin; Kocabaş, Aşkın; Aydınlı, AtillaWe report on a comparative study of grating based plasmonic band gap cavities. Numerically, we calculate the quality factors of the cavities based on three types of grating surfaces; uniform, biharmonic and Moiré surfaces. We show that for biharmonic band gap cavities, the radiation loss can be suppressed by removing the additional grating component in the cavity region. Due to the gradual change of the surface profile in the cavity region, Moiré type surfaces support cavity modes with higher quality factors. Experimentally, we demonstrate the existence of plasmonic cavities based on uniform gratings. Effective index perturbation and cavity geometries are obtained by additional dielectric loading. Quality factor of 85 is obtained from the measured band structure of the cavity. © 2009 Optical Society of America.Item Open Access Miniaturization and characterization of metamaterial resonant particles(IEEE, 2008-10) Aznar, F.; Bonache, J.; Martín, F.; Özbay, Ekmel; Alıcı, K. Boratay; Bilotti, F.; Tricarico, S.; Vegni, L.; Baena, J. D.; Jelinek, L.; Marqués, R.This paper is focussed on the miniaturization and characterization of semi-lumped resonators, of interest for the synthesis of metamaterial-based structures such as metamaterial transmission lines, frequency selective surfaces, absorbers, and radiating elements, among others. The particles consist on metallic patterns etched on a dielectric and are inspired on the split ring resonator, SRR (that is, the formerly resonant particle used for the synthesis of left handed metamaterials). The different strategies for miniaturization are discussed and examples are given. It is shown that by using two metallic levels connected through vias it is possible to achieve very small electrical size for the particles (namely, below λ/100, where λ is the wavelength in the considered substrate at resonance). A method to determine the electrical parameters of the resonators in metamaterial transmission line configurations is also presented, and the possibility to determine the characteristics of the isolated particles is discussed. Finally, examples of application of this technique are presented. This work is of interest for the synthesis of effective media metamaterials based on resonant elements. © 2008 EuMA.Item Open Access Novel microstrip fed mechanically tunable combline cavity filter(IEEE, 2013) Kurudere, S.; Erturk, V. B.A novel configuration for mechanically tunable combline bandpass filters is proposed, where the classical resonating rod-tuning screw combination is replaced with a simple printed circuit-tuning screw combination. Moreover, because a printed circuit structure that uses metal vias forms the bottom part of the cavity, the coaxial type feeding and the coaxial to cavity matching of classical combline filters are also replaced with a microstrip feeding. Consequently, the proposed configuration provides smaller size, less weight, integration with other printed circuits and significant simplification in the fabrication process. A prototype filter is designed and fabricated for verification. The measured results are in good agreement with the simulation, and the filter exhibits very good harmonic suppression.Item Open Access Novel SIW based interdigital bandpass filter with harmonic suppression(IEEE, 2014) Kurudere, S.; Ertürk, Vakur B.A novel configuration for substrate integrated waveguide (SIW) based bandpass filter with interdigital type resonators is presented. In the proposed structure, interdigital type resonators consisting of vias and circular caps at top of them are combined into a bowtie SIW structure. SIW is fed by a tapered microstrip line transition providing low loss and good matching. In order to improve harmonic suppression performance of the filter, the dumbbell shaped defected ground structure (DGS) is etched to the ground side of the microstrip line feeding section. The proposed filter structure is put in a conducting box in order to improve attenuation levels at the band edges and prevent radiation to the outside. The prototype is designed at 9 GHz center frequency with 500 MHz bandwidth, analyzed and fabricated for verification. The measurement results are in good agreement with the simulations, and the filter exhibits more than 30 dB harmonic suppression.Item Open Access Single and cascaded, magnetically controllable metasurfaces as terahertz filters(Optical Society of America OSA, 2016) Serebryannikov, A. E.; Lakhtakia, A.; Özbay, EkmelTransmission of a normally incident, linearly polarized, plane wave through either a single electrically thin metasurface comprising H-shaped subwavelength resonating elements made of magnetostatically controllable InAs or a cascade of several such metasurfaces was simulated in the terahertz regime. Stop bands that are either weakly or strongly controllable can be exhibited by a single metasurface by proper choice of the orientation of the magnetostatic field, and a ∼19%downshift of stop bands in the 0.1-5.5 THz spectral regime is possible on increasing the magnetostatic field strength from 0 to 1 T. Better controllability and wider bandwidths are possible by increasing the number of metasurfaces in a cascade, although increase of the total losses can lead to some restrictions. ON/OFF switching regimes, realizable either by applying/removing the magnetostatic field or just by changing its orientation, exist.Item Open Access SIW‐based interdigital bandpass filter with harmonic suppression(John Wiley and Sons Inc., 2015) Kurudere, S.; Ertürk, V. B.A novel configuration of interdigital bandpass filter based on the substrate integrated waveguide (SIW) technology is proposed. In addition to the interdigital resonators in SIW that determine the main response/characteristics of the filter, narrowing the width of the SIW at the center of the filter and additional vias at its input and output parts act as two additional control mechanisms to achieve the desired filter response. Moreover, dumbbells are etched to the ground side of the microstrip feeding sections at both ends of the filter to improve its harmonic suppression. A prototype filter is designed and fabricated for verification. The measured results are in good agreement with the simulations, and the filter exhibits very good harmonic suppression. © 2015 Wiley Periodicals, Inc.Item Open Access Source and filter estimation for Throat-Microphone speech enhancement(Institute of Electrical and Electronics Engineers Inc., 2016) Turan, M. A. T.; Erzin, E.In this paper, we propose a new statistical enhancement system for throat microphone recordings through source and filter separation. Throat microphones (TM) are skin-attached piezoelectric sensors that can capture speech sound signals in the form of tissue vibrations. Due to their limited bandwidth, TM recorded speech suffers from intelligibility and naturalness. In this paper, we investigate learning phone-dependent Gaussian mixture model (GMM)-based statistical mappings using parallel recordings of acoustic microphone (AM) and TM for enhancement of the spectral envelope and excitation signals of the TM speech. The proposed mappings address the phone-dependent variability of tissue conduction with TM recordings. While the spectral envelope mapping estimates the line spectral frequency (LSF) representation of AM from TM recordings, the excitation mapping is constructed based on the spectral energy difference (SED) of AM and TM excitation signals. The excitation enhancement is modeled as an estimation of the SED features from the TM signal. The proposed enhancement system is evaluated using both objective and subjective tests. Objective evaluations are performed with the log-spectral distortion (LSD), the wideband perceptual evaluation of speech quality (PESQ) and mean-squared error (MSE) metrics. Subjective evaluations are performed with an A/B comparison test. Experimental results indicate that the proposed phone-dependent mappings exhibit enhancements over phone-independent mappings. Furthermore enhancement of the TM excitation through statistical mappings of the SED features introduces significant objective and subjective performance improvements to the enhancement of TM recordings. ©2015 IEEE.Item Open Access Spatial filters based on EBG structures with anisotropic-like dispersion(IEEE, 2010) Serebryannikov, A.E.; Cakmak, A.O.; Çolak, Evrim; Özbay, EkmelBandpass and bandstop spatial filters based on the dielectric-rod EBG structures are proposed and validated for the frequency range from 18 to 25 GHz. The obtained experimental results are well consistent with the theoretical predictions. The exploited mechanism utilizes, in particular, anisotropic-like dispersion, which can occur in the conventional EBG structures made of isotropic materials.Item Open Access Sub-band equalization filter design for improving dynamic range performance of modulated wideband converter(IEEE, 2017) Alp, Y. K.; Gök, Gökhan; Korucu, A. B.In this work, we propose an iterative method to improve the dynamic range performance of the Modulated Wideband Converter (MWC), which is multi-channel sampling system for digitizing wideband sparse signals below the Nyquist limit without loss of information by using compressive sensing techniques. Our method jointly designs FIR filters for each subband to equalize the frequency response characteristics of the all sub-bands of the MWC. Obtained results from the extensive computer simulations of the MWC system show that the proposed method improves the dynamic range performance of the MWC system significantly.Item Open Access Terahertz Bandpass Frequency Selective Surfaces on Glass Substrates Using a Wet Micromachining Process(Springer New York LLC, 2017) Ramzan, Mehrab; Khan, Talha Masood; Bolat, Sami; Nebioglu, Mehmet Ali; Altan, Hakan; Okyay, Ali Kemal; Topallı, KağanThis paper presents terahertz (THz) frequency selective surfaces (FSS) implemented on glass substrate using standard microfabrication techniques. These FSS structures are designed for frequencies around 0.8 THz. A fabrication process is proposed where a 100-μm-thick glass substrate is formed through the HF etching of a standard 500-μm-thick low cost glass wafer. Using this fabrication process, three separate robust designs consisting of single-layer FSS are investigated using high-frequency structural simulator (HFSS). Based on the simulation results, the first design consists of a circular ring slot in a square metallic structure on top of a 100-μm-thick Pyrex glass substrate with 70% transmission bandwidth of approximately 0.07 THz, which remains nearly constant till 30° angle of incidence. The second design consists of a tripole structure on top of a 100-μm-thick Pyrex glass substrate with 65% transmission bandwidth of 0.035 THz, which remains nearly constant till 30° angle of incidence. The third structure consists of a triangular ring slot in a square metal on top of a 100-μm-thick Pyrex glass substrate with 70% transmission bandwidth of 0.051 THz, which remains nearly constant up to 20° angle of incidence. These designs show that the reflections from samples can be reduced compared to the conventional sample holders used in THz spectroscopy applications, by using single layer FSS structures manufactured through a relatively simple fabrication process. Practically, these structures are achieved on a fabricated 285-μm-thick glass substrate. Taking into account the losses and discrepancies in the substrate thickness, the measured results are in good agreement with the electromagnetic simulations. © 2017, Springer Science+Business Media New York.