Browsing by Subject "BRCA1 protein"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Implicit motif distribution based hybrid computational kernel for sequence classification(Oxford University Press, 2005) Atalay, V.; Cetin Atalay, R.Motivation: We designed a general computational kernel for classification problems that require specific motif extraction and search from sequences. Instead of searching for explicit motifs, our approach finds the distribution of implicit motifs and uses as a feature for classification. Implicit motif distribution approach may be used as modus operandi for bioinformatics problems that require specific motif extraction and search, which is otherwise computationally prohibitive. Results: A system named P2SL that infer protein subcellular targeting was developed through this computational kernel. Targeting-signal was modeled by the distribution of subsequence occurrences (implicit motifs) using self-organizing maps. The boundaries among the classes were then determined with a set of support vector machines. P2SL hybrid computational system achieved ∼81% of prediction accuracy rate over ER targeted, cytosolic, mitochondrial and nuclear protein localization classes. P2SL additionally offers the distribution potential of proteins among localization classes, which is particularly important for proteins, shuttle between nucleus and cytosol. © The Author 2004. Published by Oxford University Press. All rights reserved.Item Open Access Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal(American Association for the Advancement of Science (A A A S), 2013) Gao J.; Aksoy, B. A.; Dogrusoz, U.; Dresdner, G.; Gross, B.; Sumer, S. O.; Sun, Y.; Jacobsen, A.; Sinha, R.; Larsson, E.; Cerami, E.; Sander, C.; Schultz, N.The cBioPortal for Cancer Genomics (http://cbioportal.org) provides a Web resource for exploring, visualizing, and analyzing multidimensional cancer genomics data. The portal reduces molecular profiling data from cancer tissues and cell lines into readily understandable genetic, epigenetic, gene expression, and proteomic events. The query interface combined with customized data storage enables researchers to interactively explore genetic alterations across samples, genes, and pathways and, when available in the underlying data, to link these to clinical outcomes. The portal provides graphical summaries of gene-level data from multiple platforms, network visualization and analysis, survival analysis, patient-centric queries, and software programmatic access. The intuitive Web interface of the portal makes complex cancer genomics profiles accessible to researchers and clinicians without requiring bioinformatics expertise, thus facilitating biological discoveries. Here, we provide a practical guide to the analysis and visualization features of the cBioPortal for Cancer Genomics. © 2013 American Association for the Advancement of Science.Item Open Access p53 mutation with frequent novel codons but not a mutator phenotype in BRCA1-and BRCA2-associated breast tumours(Nature Publishing Group, 1998) Crook, T.; Brooks, L. A.; Crossland, S.; Osin, P.; Barker, K. T.; Waller, J.; Philp, E.; Smith, P. D.; Yulug, I.; Peto, J.; Parker, G.; Allday, M. J.; Crompton, M. R.; Gusterson, B. A.The status of p53 was investigated in breast tumours arising in germ-line carriers of mutant alleles of BRCA1 and BRCA2 and in a control series of sporadic breast tumours. p53 expression was detected in 20/26 (77%) BRCA1-, 10/22 (45%) BRCA2-associated and 25/72 (35%) grade-matched sporadic tumours. Analysis of p53 sequence revealed that the gene was mutant in 33/50 (66%) BRCA-associated tumours, whereas 7/20 (35%) sporadic grade-matched tumours contained p53 mutation (P < 0.05). A number of the mutations detected in the BRCA-associated tumours have not been previously described in human cancer databases, whilst others occur extremely rarely. Analysis of additional genes, p16(INK4), Ki-ras and β-globin revealed absence or very low incidence of mutations, suggesting that the higher frequency of p53 mutation in the BRCA-associated tumours does not reflect a generalized increase in susceptibility to the acquisition of somatic mutation. Furthermore, absence of frameshift mutations in the polypurine tracts present in the coding sequence of the TGF β type II receptor (TGF β IIR) and Bax implies that loss of function of BRCA1 or BRCA2 does not confer a mutator phenotype such as that found in tumours with microsatellite instability (MSI). p21(Waf1) was expressed in BRCA-associated tumours regardless of p53 status and, furthermore, some tumours expressing wild-type p53 did not express detectable p21(Waf1). These data do not support, therefore, the simple model based on studies of BRCA-/- embryos, in which mutation of p53 in BRCA-associated tumours results in loss of p21(Waf1) expression and deregulated proliferation. Rather, they imply that proliferation of such tumours will be subject to multiple mechanisms of growth regulation.Item Open Access TP53 mutations in familial breast cancer: Functional aspects(John Wiley & Sons, Inc., 2003) Gasco, M.; Yulug, I. G.; Crook, T.Mutation in p53 (TP53) remains one of the most commonly described genetic events in human neoplasia. The occurrence of mutations is somewhat less common in sporadic breast carcinomas than in other cancers, with an overall frequency of about 20%. There is, however, evidence that p53 is mutated at a significantly higher frequency in breast carcinomas arising in carriers of germ-line BRCA1 and BRCA2 mutations. Some of the p53 mutants identified in BRCA1 and BRCA2 mutation carriers are either previously undescribed or infrequently reported in sporadic human cancers. Functional characterization of such mutants in various systems has revealed that they frequently possess properties not commonly associated with those occurring in sporadic cases: they retain apoptosis-inducing, transactivating, and growth-inhibitory activities similar to the wild-type protein, yet are compromised for transformation suppression and also possess an independent transforming phenotype. The occurrence of such mutants in familial breast cancer implies the operation of distinct selective pressures during tumorigenesis in BRCA-associated breast cancers.