Browsing by Subject "Avalanche diodes"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Experimental evaluation of impact ionization coefficients in Al xGa1-xN based avalanche photodiodes(AIP Publishing LLC, 2006) Tut, T.; Gökkavas, M.; Bütün, B.; Bütün, S.; Ülker, E.; Özbay, EkmelThe authors report on the metal-organic chemical vapor deposition growth, fabrication, and characterization of high performance solar-blind avalanche photodetectors and the experimental evaluation of the impact ionization coefficients that are obtained from the photomultiplication data. A Schottky barrier, suitable for back and front illuminations, is used to determine the impact ionization coefficients of electrons and holes in an AlGaN based avalanche photodiode. © 2006 American Institute of Physics.Item Open Access Gain and temporal response of AlGaN solar-blind avalanche photodiodes: An ensemble Monte Carlo analysis(A I P Publishing LLC, 2003) Sevik, C.; Bulutay, C.A study was performed on temporal and gain response of AlGaN solar-blind avalanche photodiodes (APD). The ensemble Monte Carlo method was used for the purpose. It was found that without any fitting parameters, reasonable agreement was obtained with the published measurements for a GaN APD.Item Open Access High-speed 1.3 μm GaAs internal photoemission resonant cavity enhanced photodetector(IEEE, 2000) Kimukin, İbrahim; Özbay, Ekmel; Bıyıklı, Necmi; Kartaloğlu, Tolga; Aytür, Orhan; Tuttle, G.Resonant cavity enhanced (RCE) photodetectors offer the possibility of overcoming the low quantum efficiency limitation of conventional photodetectors. The RCE detectors are based on the enhancement of the optical field within a Fabry-Perot resonator. The increased field allows the use of a thin absorbing layer, which minimizes the transit time of the photogenerated carriers without hampering the quantum efficiency. Recently, we fabricated high-speed RCE p-i-n and Schottky photodetectors, where a 90% quantum efficiency along with a 3-dB bandwidth of 50 GHz has been reported. We used the transfer matrix method to design the epilayer structure and to simulate the optical properties of the photodiode. The samples were fabricated by a microwave-compatible process and high-speed measurements were made with an optical parametric oscillator.