BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Autoimmunity"

Filter results by typing the first few letters
Now showing 1 - 8 of 8
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Ant i-neuronal and stress-induced-phosphoprotein 1 antibodies in neuro-Behcet's disease
    (Elsevier, 2011-10-28) Vural, B.; Uğurel, E.; Tüzün, E.; Kürtüncü, M.; Zuliani, L.; Çavus, F.; İçoz, S.; Erdağ, E.; Gül, A.; Güre, A. O.; Vincent, A.; Özbek, U.; Eraksoy, M.; Demir, G. A.
    No disease-specific neuronal antibodies have so far been defined in neuro-Behçet's disease (NBD). Immunohistochemistry and immunocytochemistry studies showed antibodies to hippocampal and cerebellar molecular layers and the surface antigens of cultured hippocampal neurons in sera and/or cerebrospinal fluids (CSF) of 13 of 20 NBD and 6 of 20 BD patients but not in multiple sclerosis or headache controls. Screening with a protein macroarray led to identification of stress-induced-phosphoprotein-1 (STIP-1) as an antigenic target. High-titer STIP-1-antibodies were detected in 6 NBD patients' sera but not in controls. These results suggest that neuronal antibodies could be useful as diagnostic biomarkers in NBD. © 2011 Elsevier B.V.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Evaluation of X chromosome inactivation with respect to HLA genetic susceptibility in rheumatoid arthritis and systemic sclerosis
    (Public Library of Science, 2016) Kanaan, S. B.; Onat, O. E.; Balandraud, N.; Martin, G. V.; Nelson, J. L.; Azzouz, D. F.; Auger, I.; Arnoux, F.; Martin, M.; Roudier, J.; Ozcelik, T.; Lambert, N. C.
    Background: Autoimmune diseases, including rheumatoid arthritis (RA) and systemic sclerosis (SSc) are characterized by a strong genetic susceptibility from the Human Leucocyte Antigen (HLA) locus. Additionally, disorders of epigenetic processes, in particular non-random X chromosome inactivation (XCI), have been reported in many female-predominant autoimmune diseases. Here we test the hypothesis that women with RA or SSc who are strongly genetically predisposed are less susceptible to XCI bias. Methods: Using methylation sensitive genotyping of the androgen receptor (AR) gene, XCI profiles were performed in peripheral blood mononuclear cells from 161 women with RA, 96 women with SSc and 100 healthy women. HLA-DRB1 and DQB1 were genotyped. Presence of specific autoantibodies was documented for patients. XCI skewing was defined as having a ratio ≥ 80:20 of cells inactivating the same X chromosome. Results: 110 women with RA, 68 women with SSc, and 69 controls were informative for the AR polymorphism. Among them 40.9% of RA patients and 36.8% of SSc patients had skewed XCI compared to 17.4% of healthy women (P = 0.002 and 0.018, respectively). Presence of RA-susceptibility alleles coding for the "shared epitope" correlated with higher skewing among RA patients (P = 0.002) and such correlation was not observed in other women, healthy or with SSc. Presence of SSc-susceptibility alleles did not correlate with XCI patterns among SSc patients. Conclusion: Data demonstrate XCI skewing in both RA and SSc compared to healthy women. Unexpectedly, skewed XCI occurs more often in women with RA carrying the shared epitope, which usually reflects severe disease. This reinforces the view that loss of mosaicism in peripheral blood may be a consequence of chronic autoimmunity. © 2016 Kanaan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Evidence from autoimmune thyroiditis of skewed X-chromosome inactivation in female predisposition to autoimmunity
    (Nature Publishing Group, 2006) Ozcelik, T.; Uz, E.; Akyerli, C. B.; Bagislar, S.; Mustafa, C. A.; Gursoy, A.; Akarsu, N.; Toruner, G.; Kamel, N.; Gullu, S.
    The etiologic factors in the development of autoimmune thyroid diseases (AITDs) are not fully understood. We investigated the role of skewed X-chromosome inactivation (XCI) mosaicism in female predisposition to AITDs. One hundred and ten female AITDs patients (81 Hashimoto's thyroiditis (HT), 29 Graves' disease (GD)), and 160 female controls were analyzed for the androgen receptor locus by the HpaII/polymerase chain reaction assay to assess XCI patterns in DNA extracted from peripheral blood cells. In addition, thyroid biopsy, buccal mucosa, and hair follicle specimens were obtained from five patients whose blood revealed an extremely skewed pattern of XCI, and the analysis was repeated. Skewed XCI was observed in DNA from peripheral blood cells in 28 of 83 informative patients (34%) as compared with 10 of 124 informative controls (8% P<0.0001). Extreme skewing was present in 16 patients (19%), but only in three controls (2.4% P<60;0.0001). The buccal mucosa, and although less marked, the thyroid specimens also showed skewing. Analysis of two familial cases showed that only the affected individuals demonstrate skewed XCI patterns. Based on these results, skewed XCI mosaicism may play a significant role in the pathogenesis of AITDs.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Mesenchymal stem cell derived extracellular vesicles: promising immunomodulators against autoimmune, autoinflammatory disorders and SARS-CoV-2 infection
    (Scientific and Technical Research Council of Turkey, 2020) Bulut, Özlem; Gürsel, İhsan
    Discovery of novel and broad-acting immunomodulators is of critical importance for the prevention and treatment of disorders occurring due to overexuberant immune responseincluding SARS-CoV-2 triggered cytokine storm leading to lung pathology and mortality during the ongoing viral pandemic. Mesenchymal stem/stromal cells (MSCs), highly regarded for their regenerative capacities, also possessesremarkable immunoregulatory functions affecting all types of innate and adaptive immune cells. Owing to that, MSCs have been heavily investigated in clinic for the treatment of autoimmune and inflammatory diseases along with transplant rejection. Extensive research in the last decaderevealed that MSCs carry out most of their functions through paracrine factors which are soluble mediators and extracellular vesicles (EVs). EVs, including exosomes and microvesicles, are an efficient way of intercellular communication due to their unique ability to carry biological messages such as transcription factors, growth factors, cytokines, mRNAs and miRNAs over long distances. EVs originate through direct budding of the cell membrane or the endosomal secretion pathway and they consist of the cytosolic and membrane components of their parent cell. Therefore, they are able to mimic the characteristics of the parent cell, affecting the target cells upon binding or internalization. EVs secreted by MSCs are emerging as a cell-free alternative to MSC-based therapies. MSC EVs are being tested in preclinical and clinical settings where they exhibit exceptional immunosuppressivecapacity. They regulate the migration, proliferation, activation and polarization of various immune cells, promoting a tolerogenic immune response while inhibiting inflammatory response. Being as effective immunomodulators as their parent cells, MSC EVs are also preferable over MSC-based therapies due to their lower risk of immunogenicity, tumorigenicity and overall superior safety. In this review, we present the outcomes of preclinical and clinical studies utilizing MSC EVs as therapeutic agents for the treatment of a wide variety of immunological disorders.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Mitochondrial carrier homolog 1 (Mtch1) antibodies in neuro-Behçet's disease
    (Elsevier, 2013) Vural, B.; Şehitoğlu, E.; Çavuş, F.; Yalçınkaya, N.; Haytural, H.; Küçükerden, M.; Ulusoy, C.; Uğurel, E.; Turan, S.; Bulut, L.; Türkoğlu, R.; Shugaiv, E.; Kürtüncü, M.; Atakan, S.; Güre, A. O.; Gül, A.; Eraksoy, M.; Demir, G. A.; Tüzün, E.
    Efforts for the identification of diagnostic autoantibodies for neuro-Behcet's disease (NBD) have failed. Screening of NBD patients' sera with protein macroarray identified mitochondrial carrier homolog 1 (Mtch1), an apoptosis-related protein, as a potential autoantigen. ELISA studies showed serum Mtch1 antibodies in 68 of 144 BD patients with or without neurological involvement and in 4 of 168 controls corresponding to a sensitivity of 47.2% and specificity of 97.6%. Mtch1 antibody positive NBD patients had more attacks, increased disability and lower serum nucleosome levels. Mtch1 antibody might be involved in pathogenic mechanisms of NBD rather than being a coincidental byproduct of autoinflammation. © 2013 Elsevier B.V.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Modulation of immune responses using adjuvants to facilitate therapeutic vaccination
    (Wiley, 2020) Schijns, V.; Fernández‐Tejada, A.; Barjaktarović, Ž.; Bouzalas, I.; Brimnes, J.; Chernysh, S.; Gizurarson, S.; Gürsel, İhsan; Jakopin, Ž.; Lawrenz, M.; Nativi, C.; Paul, S.; Pedersen, G. K.; Rosano, C.; Ruiz‐de‐Angulo, A.; Slütter, B.; Thakur, A.; Christensen, D.; Lavelle, Ed. C.
    Therapeutic vaccination offers great promise as an intervention for a diversity of infectious and non‐infectious conditions. Given that most chronic health conditions are thought to have an immune component, vaccination can at least in principle be proposed as a therapeutic strategy. Understanding the nature of protective immunity is of vital importance, and the progress made in recent years in defining the nature of pathological and protective immunity for a range of diseases has provided an impetus to devise strategies to promote such responses in a targeted manner. However, in many cases, limited progress has been made in clinical adoption of such approaches. This in part results from a lack of safe and effective vaccine adjuvants that can be used to promote protective immunity and/or reduce deleterious immune responses. Although somewhat simplistic, it is possible to divide therapeutic vaccine approaches into those targeting conditions where antibody responses can mediate protection and those where the principal focus is the promotion of effector and memory cellular immunity or the reduction of damaging cellular immune responses as in the case of autoimmune diseases. Clearly, in all cases of antigen‐specific immunotherapy, the identification of protective antigens is a vital first step. There are many challenges to developing therapeutic vaccines beyond those associated with prophylactic diseases including the ongoing immune responses in patients, patient heterogeneity, and diversity in the type and stage of disease. If reproducible biomarkers can be defined, these could allow earlier diagnosis and intervention and likely increase therapeutic vaccine efficacy. Current immunomodulatory approaches related to adoptive cell transfers or passive antibody therapy are showing great promise, but these are outside the scope of this review which will focus on the potential for adjuvanted therapeutic active vaccination strategies.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Purinergic regulation of the immune system
    (Nature Publishing Group, 2016) Cekic, C.; Linden, J.
    Cellular stress or apoptosis triggers the release of ATP, ADP and other nucleotides into the extracellular space. Extracellular nucleotides function as autocrine and paracrine signalling molecules by activating cell-surface P2 purinergic receptors that elicit pro-inflammatory immune responses. Over time, extracellular nucleotides are metabolized to adenosine, leading to reduced P2 signalling and increased signalling through anti-inflammatory adenosine (P1 purinergic) receptors. Here, we review how local purinergic signalling changes over time during tissue responses to injury or disease, and we discuss the potential of targeting purinergic signalling pathways for the immunotherapeutic treatment of ischaemia, organ transplantation, autoimmunity or cancer.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    X chromosome inactivation and female predisposition to autoimmunity
    (Springer New York, 2008) Ozcelik, T.
    [No abstract available]

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback