Browsing by Subject "Autoencoders"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Computer network intrusion detection using sequential LSTM neural networks autoencoders(IEEE, 2018-05) Mirza, Ali H.; Coşan, SelinIn this paper, we introduce a sequential autoencoder framework using long short term memory (LSTM) neural network for computer network intrusion detection. We exploit the dimensionality reduction and feature extraction property of the autoencoder framework to efficiently carry out the reconstruction process. Furthermore, we use the LSTM networks to handle the sequential nature of the computer network data. We assign a threshold value based on cross-validation in order to classify whether the incoming network data sequence is anomalous or not. Moreover, the proposed framework can work on both fixed and variable length data sequence and works efficiently for unforeseen and unpredictable network attacks. We then also use the unsupervised version of the LSTM, GRU, Bi-LSTM and Neural Networks. Through a comprehensive set of experiments, we demonstrate that our proposed sequential intrusion detection framework performs well and is dynamic, robust and scalable.Item Open Access Diverse relevance feedback for time series with autoencoder based summarizations(IEEE Computer Society, 2018) Eravci, B.; Ferhatosmanoglu, H.We present a relevance feedback based browsing methodology using different representations for time series data. The outperforming representation type, e.g., among dual-tree complex wavelet transformation, Fourier, symbolic aggregate approximation (SAX), is learned based on user annotations of the presented query results with representation feedback. We present the use of autoencoder type neural networks to summarize time series or its representations into sparse vectors, which serves as another representation learned from the data. Experiments on 85 real data sets confirm that diversity in the result set increases precision, representation feedback incorporates item diversity and helps to identify the appropriate representation. The results also illustrate that the autoencoders can enhance the base representations, and achieve comparably accurate results with reduced data sizes.Item Open Access Randomized and rank based differential evolution(IEEE, 2009-12) Urfalıoğlu, Onay; Arıkan, OrhanMany real world problems which can be assigned to the machine learning domain are inverse problems. The available data is often noisy and may contain outliers, which requires the application of global optimization. Evolutionary Algorithms (EA's) are one class of possible global optimization methods for solving such problems. Within population based EA's, Differential Evolution (DE) is a widely used and successful algorithm. However, due to its differential update nature, given a current population, the set of possible new populations is finite and a true subset of the cost function domain. Furthermore, the update formula of DE does not use any information about the fitnesses of the population. This paper presents a novel extension of DE called Randomized and Rank based Differential Evolution (R2DE) to improve robustness and global convergence speed on multimodal problems by introducing two multiplicative terms in the DE update formula. The first term is based on a random variate of a Cauchy distribution, which leads to a randomization. The second term is based on ranking of individuals, so that R2DE exploits additional information provided by the fitnesses. In experiments including non-linear dimension reduction by autoencoders, it is shown that R2DE improves robustness and speed of global convergence. © 2009 IEEE.