Diverse relevance feedback for time series with autoencoder based summarizations
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
We present a relevance feedback based browsing methodology using different representations for time series data. The outperforming representation type, e.g., among dual-tree complex wavelet transformation, Fourier, symbolic aggregate approximation (SAX), is learned based on user annotations of the presented query results with representation feedback. We present the use of autoencoder type neural networks to summarize time series or its representations into sparse vectors, which serves as another representation learned from the data. Experiments on 85 real data sets confirm that diversity in the result set increases precision, representation feedback incorporates item diversity and helps to identify the appropriate representation. The results also illustrate that the autoencoders can enhance the base representations, and achieve comparably accurate results with reduced data sizes.