Browsing by Subject "Atmospheric pressure"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Designing efficient CMUT cells for airborne applications(IEEE, 2014) Ünlügedik, Aslı; Taşdelen, Akif Sinan; Atalar, Abdullah; Köymen, HayrettinIn this work, we study airborne CMUT cells with vacuum gap where silicon plate is operated both in elastically linear and nonlinear regimes. We report the results of a new mode of operation where the plate center swings the entire gap. The plate is kept in elastically linear region in this mode. Very large pressure levels are obtained at relatively low drive voltage levels. The operation is very efficient but the bandwidth is less than 1%. We considered operating the silicon membrane in elastically nonlinear region for larger bandwidth without sacrificing efficiency. This is achieved by employing the stiffening effect due to the atmospheric pressure. We derived the new model of the CMUT, where the membrane profile deviates from linear profile as a function of the differential static pressure on it. We present the force, the compliance models and the static analysis of stiffened CMUT cells in this work.Item Open Access Imaging capability of pseudomorphic high electron mobility transistors, AlGaN/GaN, and Si micro-Hall probes for scanning Hall probe microscopy between 25 and 125 °c(American Vacuum Society, 2009) Akram, R.; Dede, M.; Oral, A.The authors present a comparative study on imaging capabilities of three different micro-Hall probe sensors fabricated from narrow and wide band gap semiconductors for scanning hall probe microscopy at variable temperatures. A novel method of quartz tuning fork atomic force microscopy feedback has been used which provides extremely simple operation in atmospheric pressures, high-vacuum, and variable-temperature environments and enables very high magnetic and reasonable topographic resolution to be achieved simultaneously. Micro-Hall probes were produced using optical lithography and reactive ion etching process. The active area of all different types of Hall probes were 1×1 μ m2. Electrical and magnetic characteristics show Hall coefficient, carrier concentration, and series resistance of the hall sensors to be 10 mG, 6.3× 1012 cm-2, and 12 k at 25 °C and 7 mG, 8.9× 1012 cm-2 and 24 k at 125 °C for AlGaNGaN two-dimensional electron gas (2DEG), 0.281 mG, 2.2× 1014 cm-2, and 139 k at 25 °C and 0.418 mG, 1.5× 1014 cm-2 and 155 k at 100 °C for Si and 5-10 mG, 6.25× 1012 cm-2, and 12 k at 25 °C for pseudomorphic high electron mobility transistors (PHEMT) 2DEG Hall probe. Scan of magnetic field and topography of hard disc sample at variable temperatures using all three kinds of probes are presented. The best low noise image was achieved at temperatures of 25, 100, and 125 °C for PHEMT, Si, and AlGaNGaN Hall probes, respectively. This upper limit on the working temperature can be associated with their band gaps and noise associated with thermal activation of carriers at high temperatures.