Browsing by Subject "Antenna"
Now showing 1 - 10 of 10
- Results Per Page
- Sort Options
Item Open Access Analytical regularization based analysis of a spherical reflector symmetrically illuminated by an acoustic beam(IEEE, 2000) Vinogradov, S. S.; Vinogradova, E. D.; Nosich, A. I.; Altintaş, A.A mathematically accurate and numerically efficient method of analysis of a spherical reflector, fed by a scalar beam produced by a complex source- point feed, is presented. Two cases, soft and hard reflector surface, are considered. In each case the solution of the full-wave integral equation is reduced to dual series equations and then further to a regularized infinite- matrix equation. The latter procedure is based on the analytical inversion of the static part of the problem. Sample numerical results for 50-λ reflectors demonstrate features that escape a high-frequency asymptotic analysis. (C) 2000 Acoustical Society of America.Item Open Access Electronic excited states of the CP29 antenna complex of green plants: a model based on exciton calculations(Springer / Kluwer Academic Publishers, 2000) İşerı, E. İ.; Albayrak, D.; Gülen, D.We have suggested a model for the electronic excited states of the minor plant antenna, CP29, by incorporating a considerable part of the current information offered by structure determination, site-directed mutagenesis, and spectroscopy in the modeling. We have assumed that the electronic excited states of the complex have been decided by the chlorophyll-chlorophyll (Chl) and Chl-protein interactions and have modeled the Coulombic interaction between a pair of Chls in the point-dipole approximation and the Chl-protein interactions are treated as empirical fit parameters. We have suggested the Qy dipole moment orientations and the site energies for all the chlorophylls in the complex through a simultaneous simulation of the absorption and linear dichroism spectra. The assignments proposed have been discussed to yield a satisfactory reproduction of all prominent features of the absorption, linear and circular dichroism spectra as well as the key spectral and temporal characteristics of the energy transfer processes among the chlorophylls. The orientations and the spectral assignments obtained by relatively simple exciton calculations have been necessary to provide a good point of departure for more detailed treatments of structure-function relationship in CP29. Moreover, it has been discussed that the CP29 model suggested can guide the studies for a better understanding of the structure-function relationship in the major plant antenna, LHCII.Item Open Access Exceptionally directional sources with photonic-bandgap crystals(Optical Society of America, 2001-11) Biswas, R.; Özbay, Ekmel; Temelkuran, B.; Bayındır, Mehmet; Sigalas, M. M.; Ho, K.-M.Three-dimensional photonic-bandgap crystals are used to design and fabricate uniquely directional sources and receivers. By utilizing the resonances of a Fabry-Perot cavity formed with photonic-bandgap crystals, we were able to create exceptionally directional sources by placing the sources within such a cavity. Very good agreement between finite-difference time-domain calculations and the experiment is obtained. Radiation patterns with half-power beam widths of less than 12 degrees were obtained. (C) 2001 Optical Society of America.Item Open Access Experimental verification of metamaterial loaded small patch antennas(Emerald Group Publishing Limited, 2013) Alici, K. B.; Caliskan, M. D.; Özbay, Ekmel; Bilotti, F.; Toscano, A.; Vegni, L.Purpose - Metamaterial unit cells composed of deep subwavelength resonators brought up new aspects to the antenna miniaturization problem. The paper experimentally demonstrates a metamaterial-inspired miniaturization method for circular patch antennas. In the proposed layouts, the space between the patch and the ground plane is filled with a proper metamaterial composed of either multiple split-ring or spiral resonators (SRs). The authors have manufactured two different patch antennas, achieving an electrical size of ?/3.69 and ?/8.26, respectively. The paper aims to discuss these issues. Design/methodology/ approach - The operation of such a radiative component has been predicted by using a simple theoretical formulation based on the cavity model. The experimental characterization of the antenna has been performed by using a HP8510C vector network analyzer, standard horn antennas, automated rotary stages, coaxial cables with 50 O characteristic impedance and absorbers. Before the characterization measurements we performed a full two-port calibration. Findings - Electrically small circular patch antennas loaded with single layer metamaterials experimentally demonstrated to acceptable figures of merit for applications. The proposed miniaturization technique is potentially promising for antenna applications and the results presented in the paper constitute a relevant proof for the usefulness of the metamaterial concepts in antenna miniaturization problems. Originality/value - Rigorous experimental characterization of several meta material loaded antennas and proof of principle results were provided. Copyright © 2013 Emerald Group Publishing Limited. All rights reserved.Item Open Access Frequency dependent steering with backward leaky waves via photonic crystal interface layer(Optical Society of America, 2009) Colak, E.; Caglayan, H.; Cakmak, A. O.; Villa, A. D.; Capolino, F.; Özbay, EkmelA Photonic Crystal (PC) with a surface defect layer (made of dimers) is studied in the microwave regime. The dispersion diagram is obtained with the Plane Wave Expansion Method. The dispersion diagram reveals that the dimer-layer supports a surface mode with negative slope. Two facts are noted: First, a guided (bounded) wave is present, propagating along the surface of the dimer-layer. Second, above the light line, the fast traveling mode couple to the propagating spectra and as a result a directive (narrow beam) radiation with backward characteristics is observed and measured. In this leaky mode regime, symmetrical radiation patterns with respect to the normal to the PC surface are attained. Beam steering is observed and measured in a 70 degrees angular range when frequency ranges in the 11.88-13.69GHz interval. Thus, a PC based surface wave structure that acts as a frequency dependent leaky wave antenna is presented. Angular radiation pattern measurements are in agreement with those obtained via numerical simulations that employ the Finite Difference Time Domain Method (FDTD). Finally, the backward radiation characteristics that in turn suggest the existence of a backward leaky mode in the dimer-layer are experimentally verified using a halved dimer-layer structure. (C) 2009 Optical Society of AmericaItem Open Access Highly directional enhanced radiation from sources embedded inside three-dimensional photonic crystals(Optical Society of America, 2005) Caglayan, H.; Bulu, I.; Özbay, EkmelWe have experimentally studied emission of microwave radiation from a monopole source embedded in a three-dimensional photonic crystal. We have demonstrated enhancement of microwave radiation at the band edge and cavity mode frequencies. Furthermore, we have shown that it is possible to obtain highly directive microwave radiation sources operating at the band edge of the three-dimensional photonic crystal. We have measured half power beam widths of 13 degrees for both E and H planes, corresponding to a maximum directivity of 245. (c) 2005 Optical Society of America.Item Open Access Intravascular extended sensitivity (IVES) MRI antennas(John Wiley & Sons, Inc, 2003) Susil, R. C.; Yeung, C. J.; Atalar, ErginThe design and application of an intravascular extended sensitivity (IVES) MRI antenna is described. The device is a loopless antenna design that incorporates both an insulating, dielectric coating and a winding of the antenna whip into a helical shape. Because this antenna produces a broad region of high SNR and also allows for imaging near the tip of the device, it is useful for imaging long, luminal structures. To elucidate the design and function of this device, the effects of both insulation and antenna winding were characterized by theoretical and experimental studies. Insulation broadens the longitudinal region over which images can be collected (i.e., along the lumen of a vessel) by increasing the resonant pole length. Antenna winding, conversely, allows for imaging closer to the tip of the antenna by decreasing the resonant pole length. Over a longitudinal region of 20 cm, the IVES imaging antenna described here produces a system SNR of approximately 40,000/r (mL-1Hz1/2), where r is the radial distance from the antenna axis in centimeters. As opposed to microcoil antenna designs, these antennas do not require exact positioning and allow for imaging over broad tissue regions. While focusing on the design of the IVES antenna, this work also serves to enhance our overall understanding of the properties and behavior of the loopless antenna design. © 2003 Wiley-Liss, Inc.Item Open Access The left hand of electromagnetism : metamaterials(2010) Alıcı, Kamil BoratayMetamaterials are artificial periodic structures whose electromagnetic response is solely dependent on the constituting unit cells. In the present thesis, we studied unit cell characteristics of metamaterials that has negative permeability and permittivity. We investigated negative permeability medium elements, especially in terms of their electrical size and resonance strength. Experimental and numerical study of µ-negative (MNG) materials: multi split ring resonators (MSRRs), spiral resonators (SRs) and multi-spiral resonators are presented. The resonance frequency of the structures is determined by the transmission measurements and minimum electrical size of λ0/17 for the MSRRs and of λ0/82 for the SRs observed. We explain a method for tuning the resonance frequency of the multi-split structures. We investigated scalability of MNG materials and designed a low loss double negative composite metamaterial that operates at the millimeter wave regime. A negative pass-band with a peak transmission value of -2.7 dB was obtained experimentally at 100 GHz. We performed transmission based qualitative effective medium theory analysis numerically and experimentally, in order to prove the double negative nature of the metamaterial. These results were supported by the standard retrieval analysis method. We confirmed that the effective index of the metamaterial was indeed negative by performing far field angular scanning measurements for a metamaterial prism. Moreover, we illuminated the split-ring resonator based metamaterial flat lens with oblique incidence and observed from the scanning experiments, the shifting of the beam to the negative side. The first device was a horn antenna and metamaterial lens composite whose behavior was similar to Yagi-Uda antenna. We numerically and experimentally investigated planar fishnet metamaterials operating at around 20 GHz and 100 GHz and demonstrated that their effective index is negative. The study is extended to include the response of the metamaterial layer when the metamaterial plane normal and the propagation vector are not parallel. We also experimentally studied the transmission response of a one dimensional rectangle prism shaped metamaterial slab for oblique incidence angles and confirmed the insensitivity of split-ring resonator based metamaterials to the angle of incidence. After the demonstration of complete transmission enhancement by using deep subwavelength resonators into periodically arranged subwavelength apertures, we designed and implemented a metamaterial with controllable bandwidth. The metamaterial based devices can be listed under the categories of antennas absorbers and transmission enhancement. We studied electrically small resonant antennas composed of split ring resonators (SRR) and monopoles. The electrical size, gain and efficiency of the antenna were λ0/10, 2.38 and 43.6%, respectively. When we increased the number of SRRs in one dimension, we observed beam steerability property. These achievements provide a way to create rather small steerable resonant antennas. We also demonstrated an electrically small antenna that operates at two modes for two perpendicular polarizations. The antenna was single fed and composed of perpendicularly placed metamaterial elements and a monopole. One of the metamaterial elements was a multi split ring resonator and the other one was a split ring resonator. When the antenna operates for the MSRR mode at 4.72 GHz for one polarization, it simultaneously operates for the SRR mode at 5.76 GHz, but for the perpendicular polarization. The efficiencies of the modes were 15% and 40% with electrical sizes of λ/11.2 and λ/9.5. Finally, we experimentally verified a miniaturization method of circular patch antennas. By loading the space between the patch and ground plane with metamaterial media composed of multi-split ring resonators and spiral resonators, we manufactured two electrically small patch antennas of electrical sizes λ/3.69 and λ/8.26. The antenna efficiency was 40% for the first mode of the multi-split ring resonator antenna with broad far field radiation patterns similar to regular patch antennas. We designed, implemented, and experimentally characterized electrically thin microwave absorbers by using the metamaterial concept. The absorbers consist of i) a metal back plate and an artificial magnetic material layer; ii) metamaterial back plate and a resistive sheet layer. We investigated absorber performance in terms of absorbance, fractional bandwidth and electrical thickness, all of which depend on the dimensions of the metamaterial unit cell and the distance between the back plate and metamaterial layer. As a proof of concept, we demonstrated a λ/4.7 thick absorber of type i), with a 99.8% absorption peak along with a 8% fractional bandwidth. We have also demonstrated experimentally a λ/4.7 and a λ/4.2 thick absorbers of type ii), based on SRR and MSRR magnetic metamaterial back plates, respectively. The absorption peak of the SRR layout is 97.4%, while for the MSRR one the absorption peak is 98.4%. We conveyed these concepts to optical frequencies and demonstrated a metamaterial inspired absorber for solar cell applications. We finalized the study by a detailed study of split ring resonators at the infrared and visible band. We studied i) frequency tuning, ii) effect of resonator density, iii) shifting magnetic resonance frequency by changing the resonator shape, iv) effect of metal loss and plasma frequency and designed a configuration for transmission enhancement at the optical regime. By using subwavelength optical split ring resonator antennas and couplers we achieved a 400-fold enhanced transmission from a subwavelength aperture area of the electrical size λ2 /25. The power was transmitted to the far field with 3.9 dBi directivity at 300 THz.Item Open Access Photonic crystal-based resonant antenna with a very high directivity(American Institute of Physics, 2000-09-24) Temelkuran, B.; Bayındır, Mehmet; Özbay, Ekmel; Biswas, R.; Sigalas, M. M.; Tuttle, G.; Ho, K. M.We investigate the radiation properties of an antenna that was formed by a hybrid combination of a monopole radiation source and a cavity built around a dielectric layer-by-layer three-dimensional photonic crystal. We measured a maximum directivity of 310, and a power enhancement of 180 at the resonant frequency of the cavity. We observed that the antenna has a narrow bandwidth determined by the cavity, where the resonant frequency can be tuned within the band gap of the photonic crystal. The measured radiation patterns agree well with our theoretical results. (C) 2000 American Institute of PhysicsItem Open Access Ultrafast and sensitive bioassay using split ring resonator structures and microwave heating(American Institute of Physics, 2010-08-30) Caglayan, H.; Cakmakyapan, S.; Addae, S. A.; Pinard, M. A.; Caliskan, D.; Aslan, K.; Özbay, EkmelIn this paper, we have reported that split ring resonators (SRRs) structures can be used for bioassay applications in order to further improve the assay time and sensitivity. The proof-of-principle demonstration of the ultrafast bioassays was accomplished by using a model biotin-avidin bioassay. While the identical room temperature bioassay (without microwave heating) took 70 min to complete, the identical bioassay took less than 2 min to complete by using SRR structures (with microwave heating). A lower detection limit of 0.01 nM for biotinylated-bovine serum albumin (100-fold lower than the room temperature bioassay) was observed by using SRR structures.