Frequency dependent steering with backward leaky waves via photonic crystal interface layer

Date
2009
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Optics Express
Print ISSN
1094-4087
Electronic ISSN
Publisher
Optical Society of America
Volume
17
Issue
12
Pages
9879 - 9890
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

A Photonic Crystal (PC) with a surface defect layer (made of dimers) is studied in the microwave regime. The dispersion diagram is obtained with the Plane Wave Expansion Method. The dispersion diagram reveals that the dimer-layer supports a surface mode with negative slope. Two facts are noted: First, a guided (bounded) wave is present, propagating along the surface of the dimer-layer. Second, above the light line, the fast traveling mode couple to the propagating spectra and as a result a directive (narrow beam) radiation with backward characteristics is observed and measured. In this leaky mode regime, symmetrical radiation patterns with respect to the normal to the PC surface are attained. Beam steering is observed and measured in a 70 degrees angular range when frequency ranges in the 11.88-13.69GHz interval. Thus, a PC based surface wave structure that acts as a frequency dependent leaky wave antenna is presented. Angular radiation pattern measurements are in agreement with those obtained via numerical simulations that employ the Finite Difference Time Domain Method (FDTD). Finally, the backward radiation characteristics that in turn suggest the existence of a backward leaky mode in the dimer-layer are experimentally verified using a halved dimer-layer structure. (C) 2009 Optical Society of America

Course
Other identifiers
Book Title
Citation
Published Version (Please cite this version)