Browsing by Subject "Ant colony optimization"
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Ant colony optimization for the single model U-type assembly line balancing problem(Elsevier, 2009) Sabuncuoglu, I.; Erel, E.; Alp, A.An assembly line is a production line in which units move continuously through a sequence of stations. The assembly line balancing problem is defined as the allocation of tasks to an ordered sequence of stations subject to precedence constraints with the objective of optimizing a performance measure. In this paper, we propose ant colony algorithms to solve the single-model U-type assembly line balancing problem. We conduct an extensive experimental study in which the performance of the proposed algorithm is compared against best known algorithms reported in the literature. The results indicate that the proposed algorithms display very competitive performance against them. © 2009 Elsevier B.V. All rights reserved.Item Open Access The COST292 experimental framework for TRECVID 2007(National Institute of Standards and Technology, 2007) Zhang, Q.; Corvaglia, M.; Aksoy, Selim; Naci, U.; Adami, N.; Aginako, N.; Alatan, A.; Alexandre, L. A.; Almeida, P.; Avrithis, Y.; Benois-Pineau, J.; Chandramouli, K.; Damnjanovic, U.; Esen, E.; Goya, J.; Grzegorzek, M.; Hanjalic, A.; Izquierdo, E.; Jarina, R.; Kapsalas, P.; Kompatsiaris, I.; Kuba, M.; Leonardi, R.; Makris, L.; Mansencal, B.; Mezaris, V.; Moumtzidou, A.; Mylonas, P.; Nikolopoulos, S.; Piatrik, T.; Pinheiro, A. M. G.; Reljin, B.; Spyrou, E.; Tolias, G.; Vrochidis, S.; Yakın, G.; Zajic, G.In this paper, we give an overview of the four tasks submitted to TRECVID 2007 by COST292. In shot boundary (SB) detection task, four SB detectors have been developed and the results are merged using two merging algorithms. The framework developed for the high-level feature extraction task comprises four systems. The first system transforms a set of low-level descriptors into the semantic space using Latent Semantic Analysis and utilises neural networks for feature detection. The second system uses a Bayesian classifier trained with a "bag of subregions". The third system uses a multi-modal classifier based on SVMs and several descriptors. The fourth system uses two image classifiers based on ant colony optimisation and particle swarm optimisation respectively. The system submitted to the search task is an interactive retrieval application combining retrieval functionalities in various modalities with a user interface supporting automatic and interactive search over all queries submitted. Finally, the rushes task submission is based on a video summarisation and browsing system comprising two different interest curve algorithms and three features.Item Open Access Customer order scheduling problem: a comparative metaheuristics study(Springer, 2007) Hazır, Ö.; Günalay, Y.; Erel, E.The customer order scheduling problem (COSP) is defined as to determine the sequence of tasks to satisfy the demand of customers who order several types of products produced on a single machine. A setup is required whenever a product type is launched. The objective of the scheduling problem is to minimize the average customer order flow time. Since the customer order scheduling problem is known to be strongly NP-hard, we solve it using four major metaheuristics and compare the performance of these heuristics, namely, simulated annealing, genetic algorithms, tabu search, and ant colony optimization. These are selected to represent various characteristics of metaheuristics: nature-inspired vs. artificially created, population-based vs. local search, etc. A set of problems is generated to compare the solution quality and computational efforts of these heuristics. Results of the experimentation show that tabu search and ant colony perform better for large problems whereas simulated annealing performs best in small-size problems. Some conclusions are also drawn on the interactions between various problem parameters and the performance of the heuristics.Item Open Access Foraging swarms as Nash equilibria of dynamic games(IEEE, 2014) Özgüler, A. B.; Yildiz, A.The question of whether foraging swarms can form as a result of a noncooperative game played by individuals is shown here to have an affirmative answer. A dynamic game played by N agents in 1-D motion is introduced and models, for instance, a foraging ant colony. Each agent controls its velocity to minimize its total work done in a finite time interval. The game is shown to have a unique Nash equilibrium under two different foraging location specifications, and both equilibria display many features of a foraging swarm behavior observed in biological swarms. Explicit expressions are derived for pairwise distances between individuals of the swarm, swarm size, and swarm center location during foraging.