Browsing by Subject "Angle of Incidence"
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Open Access Effect of in-material losses on terahertz absorption, transmission, and reflection in photonic crystals made of polar dielectrics(A I P Publishing LLC, 2015) Serebryannikov, A. E.; Nojima, S.; Alici, K. B.; Özbay, EkmelThe effect of the material absorption factor on terahertz absorption (A), transmittance (T), and reflectance (R) for slabs of PhC that comprise rods made of GaAs, a polar dielectric, is studied. The main goal was to illustrate how critical a choice of the absorption factor for simulations is and to indicate the importance of the possible modification of the absorption ability by using either active or lossy impurities. The spectra of A, T, and R are strongly sensitive to the location of the polaritonic gap with respect to the photonic pass and stop bands connected with periodicity that enables the efficient combination of the effects of material and structural parameters. It will be shown that the spectra can strongly depend on the utilized value of the material absorption factor. In particular, both narrow and wide absorption bands may appear owing to a variation of the material parameters with a frequency in the vicinity of the polaritonic gap. The latter are often achieved at wideband suppression of transmission, so that an ultra-wide stop band can appear as a result of adjustment of the stop bands having different origin. The results obtained at simultaneous variation of the absorption factor and frequency, and angle of incidence and frequency, indicate the possibility of the existence of wide ranges of tolerance, in which the basic features do remain. This allows for mitigating the accuracy requirements for the absorption factor in simulations and promises the efficient absorption of nonmonochromatic waves and beams with a wide angular spectrum. Suppression of narrowband effects in transmission is demonstrated at rather large values of the absorption factor, when they appear due to either the defect modes related to structural defects or dispersion inspired variations of the material parameters in the vicinity of the polaritonic gap. Comparison with auxiliary structures helps one to detect the common features and differences of homogeneous slabs and slabs of a PhC, which are made of GaAs. © 2015 AIP Publishing LLC.Item Open Access One-way transmission through the subwavelength slit in nonsymmetric metallic gratings(Optical Society of America, 2010-07-27) Cakmakyapan, S.; Serebryannikov, A. E.; Caglayan, H.; Özbay, EkmelAn approach for obtaining one-way transmission in the beaming regime is suggested that is based on the directional radiation of surface plasmons in nonsymmetric metallic gratings with a single slit. In contrast to the various nonsymmetric one-way diffraction gratings that have recently been proposed, the possibility of obtaining of narrow beams is demonstrated. Strong directional selectivity can appear a wide range of the observation angles, while the angle of incidence is retained.Item Open Access Resonances in the electromagnetic scattering by very large finite-periodic grids of circular dielectric wires(IEEE, 2010-06) Natarov, D. M.; Benson, T. M.; Altıntaş, Ayhan; Sauleau, R.; Nosich, I.Diffraction of plane waves by infinite gratings is a classical research topic in the scattering theory. Using the Floquet theorem, one can reduce the infinite grating problem to the one-period problem. A characteristic feature of infinite-grating scattering is the drastic transformation of the scattering pattern and reflectance intensity if, in the process of changing the frequency or the angle of incidence, one of the Floquet harmonics is "passing over horizon." This phenomenon was first explained by Rayleigh [1] who studied theoretically the "anomalies" discovered experimentally by Wood [2]. In the simplest case of the normal incidence, these Rayleigh-Wood anomalies are observed if the period of the grating is multiple to the wavelength. © 2010 IEEE.Item Open Access Spoof-plasmon relevant one-way collimation and multiplexing at beaming from a slit in metallic grating(Optical Society of America, 2012) Çakmakyapan, Semih; Serebryannikov, A.E.; Caglayan H.; Özbay, EkmelDiode and collimator/multiplexer functions are suggested to be combined in one device that is based on a thin metallic grating with a single subwavelength slit. A proper choice of the structural (a)symmetry of the grating can result in obtaining one-way collimation and multiplexing with a single on-axis or off-axis, or two off-axis narrow outgoing beams. It is possible due to freedom in utilizing different combinations of the excitation conditions of the spoof surface plasmons at the four grating parts - right and left front-side and right and left back-side ones. Such a combining provides one with an efficient tool to engineer one-way collimators and multiplexers with the desired characteristics. Strong asymmetry in transmission with respect to the incidence direction (forward vs backward case) can be obtained within a wide range of variation of the incident beam parameters, i.e., angle of incidence and frequency, while the outgoing radiation is concentrated within a narrow range of the observation angle variation. Most of the observed asymmetric transmission features can be qualitatively explained using the concept of the equivalent source placed inside the slit. © 2012 Optical Society of America.Item Open Access Triangular metallic gratings for large absorption enhancement in thin film Si solar cells(Optical Society of American (OSA), 2012) Battal, E.; Yogurt, T.A.; Aygun L.E.; Okyay, Ali KemalWe estimate high optical absorption in silicon thin film photovoltaic devices using triangular corrugations on the back metallic contact. We computationally show 21.9% overall absorptivity in a 100-nmthick silicon layer, exceeding any reported absorptivity using single layer gratings placed on the top or the bottom, considering both transverse electric and transverse magnetic polarizations and a wide spectral range (280 - 1100 nm). We also show that the overall absorptivity of the proposed scheme is relatively insensitive to light polarization and the angle of incidence. We also discuss the implications of potential fabrication process variations on such a device. © 2012 Optical Society of America.Item Open Access Two-dimensional ferroelectric photonic crystals: Optics and band structure(Taylor & Francis Inc., 2013-09-20) Simsek S.; Mamedov, A. M.; Özbay, EkmelIn this report we present an investigation of the optical properties and band structure calculations for the photonic structures based on the functional materials- ferroelectrics. A theoretical approach to the optical properties of the 2D and 3D photonic crystals which yields further insight in the phenomenon of the reflection from different families of lattice planes in relation to the presence of photonic gaps or photonic bands. We calculate the photonic bands and optical properties of LiNbO3 based photonic crystals. Calculations of reflection and transmission spectra show the features correspond to the onset of diffraction, as well as to additional reflectance structures at large values of the angle of incidence. © 2013 Copyright Taylor and Francis Group, LLC.