Browsing by Subject "Amplified spontaneous emissions"
Now showing 1 - 8 of 8
- Results Per Page
- Sort Options
Item Open Access Alloyed heterostructures of CdSexS1-x nanoplatelets with highly tunable optical gain performance(American Chemical Society, 2017) Kelestemur Y.; Dede, D.; Gungor K.; Usanmaz, C. F.; Erdem, O.; Demir, Hilmi VolkanHere, we designed and synthesized alloyed heterostructures of CdSexS1-x nanoplatelets (NPLs) using CdS coating in the lateral and vertical directions for the achievement of highly tunable optical gain performance. By using homogeneously alloyed CdSexS1-x core NPLs as a seed, we prepared CdSexS1-x/CdS core/crown NPLs, where CdS crown region is extended only in the lateral direction. With the sidewall passivation around inner CdSexS1-x cores, we achieved enhanced photoluminescence quantum yield (PL-QY) (reaching 60%), together with increased absorption cross-section and improved stability without changing the emission spectrum of CdSexS1-x alloyed core NPLs. In addition, we further extended the spectral tunability of these solution-processed NPLs with the synthesis of CdSexS1-x/CdS core/shell NPLs. Depending on the sulfur composition of the CdSexS1-x core and thickness of the CdS shell, CdSexS1-x/CdS core/shell NPLs possessed highly tunable emission characteristics within the spectral range of 560-650 nm. Finally, we studied the optical gain performances of different heterostructures of CdSexS1-x alloyed NPLs offering great advantages, including reduced reabsorption and spectrally tunable optical gain range. Despite their decreased PL-QY and reduced absorption cross-section upon increasing the sulfur composition, CdSexS1-x based NPLs exhibit highly tunable amplified spontaneous emission performance together with low gain thresholds down to ∼53 μJ/cm2.Item Open Access Blue-and red-shifting amplified spontaneous emission of CdSe/CdS core/shell colloidal quantum dots(IEEE, 2013) Kelestemur, Yusuf; Cihan, Ahmet Fatih; Güzeltürk, Burak; Yerli, Ozan; Kurum, U.; Yaglioglu H.G.; Elmali, A.; Demir, Hilmi VolkanWe report blue- and red-shifting amplified spontaneous emission of CdSe/CdS quantum dots, controlled by varying core/shell dimensions and modifying exciton-exciton interactions, with low optical gain threshold of two-photon absorption pumping. © 2013 The Optical Society.Item Open Access Fiber amplification of pulse bursts up to 20 μj pulse energy at 1 kHz repetition rate(Optical of Society of America, 2011-08-23) Kalaycıoğlu, Hamit; Eken, K.; İlday, F. ÖmerWe demonstrate burst-mode operation of a polarization-maintaining Yb-doped fiber amplifier. Groups of pulses with a temporal spacing of 10 ns and 1 kHz overall repetition rate are amplified to an average pulse energy of ∼20 μJ and total burst energy of 0:25 mJ. The pulses are externally compressed to ∼400 fs. The amplifier is synchronously pulsed-pumped to minimize amplified spontaneous emission between the bursts. We characterize the influence of pump pulse duration, pump-to-signal delay, and signal burst length.Item Open Access High-efficiency optical gain in type-II semiconductor nanocrystals of alloyed colloidal quantum wells(American Chemical Society, 2017) Guzelturk, B.; Kelestemur Y.; Olutas M.; Li, Q.; Lian, T.; Demir, Hilmi VolkanColloidal nanocrystals having controlled size, tailored shape, and tuned composition have been explored for optical gain and lasing. Among these, nanocrystals having Type-II electronic structure have been introduced toward low-threshold gain. However, to date, their performance has remained severely limited due to diminishing oscillator strength and modest absorption cross-section. Overcoming these problems, here we realize highly efficient optical gain in Type-II nanocrystals by using alloyed colloidal quantum wells. With composition-tuned core/alloyed-crown CdSe/CdSexTe1-x quantum wells, we achieved amplified spontaneous emission thresholds as low as 26 μJ/cm2, long optical gain lifetimes (τgain ≈ 400 ps), and high modal gain coefficients (gmodal ≈ 930 cm-1). We uncover that the optical gain in these Type-II quantum wells arises from the excitations localized to the alloyed-crown region that are electronically coupled to the charge-transfer state. These alloyed heteronanostructures exhibiting remarkable optical gain performance are expected to be highly appealing for future display and lighting technologies.Item Open Access Time-and position-dependent modeling of high-power low-repetition-rate Er-Yb-fiber amplifier(IEEE, 2013) Pavlov, Ihor; Dülgergil, E.; Elahi, Parviz; İlday, F. ÖmerThere is rapid progress in the development of high-power fiber lasers due to their robust operation, low cost, high beam quality at high powers. There are various applications, such as laser sensing, LIDAR applications, processing of specific materials, which require robust and high-power pulsed laser sources at 1550 nm with high beam quality. Achievement of high peak power with low repetition rate is challenging due to well-known problems of strong nonlinear effects and amplified spontaneous emission (ASE) build-up between pulses. In order to reach highest efficiency, the design of each stage of amplification should be carefully optimized. Numerical modeling can be a great tool due to the large number of parameters involved [1]. To date, most modeling efforts of fiber amplification have assumed either a lumped gain model for pulse propagation or a distributed, position-dependent gain model for CW signal for computational simplicity. Here, we investigate both time- and position-dependent gain dynamics numerically, which are used to optimize experimental results. © 2013 IEEE.Item Open Access Type-tunable amplified spontaneous emission from core-seeded CdSe/CdS nanorods controlled by exciton-exciton interaction(Royal Society of Chemistry, 2014) Kelestemur Y.; Cihan, A. F.; Guzelturk, B.; Demir, Hilmi VolkanType-tunable optical gain performance of core-seeded CdSe/CdS nanorods is studied via two-photon optical pumping. Controlling the exciton-exciton interaction by varying the core and shell size, blue-shifted and red-shifted modes of amplified spontaneous emission are systematically demonstrated and their type attributions are verified by time-resolved emission kinetics. This journal isItem Open Access Type-tuning of quasi-type-II CdSe/CdS seeded core/shell nanorods: Type-I vs. type-II(IEEE, 2013) Cihan, Ahmet Fatih; Kelestemur, Yusuf; Güzeltürk, Burak; Demir, Hilmi VolkanWe present tuning of quasi-type-II CdSe/CdS core/shell nanorods between type-I-like and type-II-like behavior in their amplified spontaneous emission pumped by 2-photon excitation, with the type attributions verified by time-resolved emission kinetics. © OSA 2013.Item Open Access Ultralow-threshold up-converted lasing in oligofluorenes with tailored strong nonlinear absorption(Royal Society of Chemistry, 2015) Guzelturk, B.; Kanibolotsky, A.L.; Orofino-Pena, C.; Laurand, N.; Dawson, M.D.; Skabara P.J.; Demir, Hilmi VolkanNonlinear optical response in organic semiconductors has been an attractive property for many practical applications. For frequency up-converted lasers, to date, conjugated polymers, fluorescent dyes and small organic molecules have been proposed but their performances have been severely limited due to the difficulty in simultaneously achieving strong nonlinear optical response and high performance optical gain. In this work, we show that structurally designed truxene-based star-shaped oligofluorenes exhibit strong structure-property relationships enabling enhanced nonlinear optical response with favorable optical gain performance. As the number of fluorene repeat units in each arm is increased from 3 to 6, these molecules demonstrate a two-photon absorption cross-section as high as 2200 GM, which is comparable to that of linear conjugated polymers. Tailored truxene oligomers with six fluorene units in each arm (T6) show two-photon absorption pumped amplified spontaneous emission with a threshold as low as 2.43 mJ cm-2, which is better than that of the lowest reported threshold in organic semiconductors. Furthermore, we show a frequency up-converted laser using the newly designed and synthesized star-shaped oligomer T6 with a threshold as low as 3.1 mJ cm-2, which is more than an order of magnitude lower than that of any conjugated polymer. Thus, these oligomers with enhanced nonlinear optical properties are highly attractive for bio-integrated applications such as photodynamic therapy and in vivo bio-sensing. © The Royal Society of Chemistry 2015.