Browsing by Subject "Amino acid"
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Item Open Access Gemcitabine integrated nano-prodrug carrier system(American Chemical Society, 2017) Hamsici, S.; Ekiz, M. S.; Ciftci, G. C.; Tekinay, A. B.; Güler, Mustafa O.Peptide nanomaterials have received a great deal of interest in drug-delivery applications due to their biodegradability, biocompatibility, suitability for large-scale synthesis, high drug-loading capacities, targeting ability, and ordered structural organization. The covalent conjugation of drugs to peptide backbones results in prolonged circulation time and improved stability of drugs. Therapeutic efficacy of gemcitabine, which is used for breast cancer treatment, is severely compromised due to its rapid plasma degradation. Its hydrophilic nature poses a challenge for both its efficient encapsulation into nanocarrier systems and its sustained release property. Here, we designed a new peptide prodrug molecule for the anticancer drug gemcitabine, which was covalently conjugated to the C-terminal of 9-fluorenylmethoxy carbonyl (Fmoc)-protected glycine. The prodrug was further integrated into peptide nanocarrier system through noncovalent interactions. A pair of oppositely charged amyloid-inspired peptides (Fmoc-AIPs) were exploited as components of the drug-carrier system and self-assembled into one-dimensional nanofibers at physiological conditions. The gemcitabine integrated nanoprodrug carrier system exhibited slow release and reduced the cellular viability of 4T1 breast cancer cell line in a time- and concentration-dependent manner.Item Open Access Glycine self-assembled on graphene enhances the solar absorbance performance(Elsevier, 2019) Ersan, F.; Aktürk, E.; Çıracı, SalimDespite its high solar absorbance and surface coating abilities, pristine graphene as a semimetal is not promising for photovoltaic applications. In this study, we predict that Glycine (Gly), an amino acid, which is normally bound to pristine graphene by a weak van der Waals attraction, can form an organic coating durable to ambient condition when adsorbed on vacancy patterned graphene surface. Moreover, adsorbed Gly coating induces metal-insulator transition and concomitantly increases the solar absorbance of pristine graphene more than three times. This way, graphene attain critical functionalities to be used in solar energy and photovoltaic applications.Despite its high solar absorbance and surface coating abilities, pristine graphene as a semimetal is not promising for photovoltaic applications. In this study, we predict that Glycine (Gly), an amino acid, which is normally bound to pristine graphene by a weak van der Waals attraction, can form an organic coating durable to ambient condition when adsorbed on vacancy patterned graphene surface. Moreover, adsorbed Gly coating induces metal-insulator transition and concomitantly increases the solar absorbance of pristine graphene more than three times. This way, graphene attain critical functionalities to be used in solar energy and photovoltaic applications.Item Open Access Mutational analysis of the major proline transporter (PrnB) of aspergillus nidulans(Taylor & Francis, 2003) Tavoularis, S. N.; Tazebay, U. H.; Diallinas, G.; Sideridou, M.; Rosa, A.; Scazzocchio, C.; Sophianopoulou, V.PrnB, the L-proline transporter of Aspergillus nidulans, belongs to the Amino acid Polyamine Organocation (APC) transporter family conserved in prokaryotes and eukaryotes. In silico analysis and limited biochemical evidence suggest that APC transporters comprise 12 transmembrane segments (TMS) connected with relatively short hydrophilic loops (L). However, very little is known on the structure-function relationships in APC transporters. This work makes use of the A. nidulans PrnB transporter to address structure-function relationships by selecting, constructing and analysing several prnB mutations. In the sample, most isolated missense mutations affecting PrnB function map in the borders of cytoplasmic loops with transmembrane domains. These are I119N and G120W in L2-TMS3, F278V in L6-TMS7, NRT378NRTNRT and PY382PYPY in L8-TMS9 and T456N in L10-TMS11. A single mutation (G403E) causing, however, a very weak phenotype, maps in the borders of an extracellular loop (L9-TMS10). An important role of helix TMS6 for proline binding and transport is supported by mutations K245L and, especially, F248L that clearly affect PrnB uptake kinetics. The critical role of these residues in proline binding and transport is further shown by constructing and analysing isogenic strains expressing selected prnB alleles fused to the gene encoding the Green Fluorescent Protein (GFP). It is shown that, while some prnB mutations affect proper translocation of PrnB in the membrane, at least two mutants, K245E and F248L, exhibit physiological cellular expression of PrnB and, thus, the corresponding mutations can be classified as mutations directly affecting proline binding and/or transport. Finally, comparison of these results with analogous studies strengthens conclusions concerning amino acid residues critical for function in APC transporters.Item Open Access Selective fluorescence sensing of biological thiols using a bodipy based bifunctional probe and the catalytic activity of short peptide amphiphile nanostructures : implications on the oring of life(2013) Altay, YiğitChemosensor development is an attractive field of modern chemistry and there exist large amount of contribution from all over the world. The biological importance of thiols triggered the development of sensors to differentiate especially cysteine (Cys), homocysteine (Hcy) and glutathione (GSH) which play key roles in biological systems. Concentration of those thiols results in number of diseases and their structural similarity complicates the differentiation. Optical probes especially fluorescent ones are widely employed for that purpose since it offers simplicity, sensitivity and low detection limits as well as real time analysis. BODIPY core is decorated with a Michael acceptor nitro-styrene group to covalent incorporation of thiols and with an aza-crown moiety to recognition of N-terminus of them. The work in this thesis is the first example in which one of them is separated from others or three of them separated from each other’s by chain length difference using fluorescence spectrometry. Formation of short peptides (2-4 aa residues) is considered to be likely under primordial conditions, following a number of scenarios. In this work, it is constructed a short peptide library limiting our choice of amino acids to those believed to be available at larger concentrations such as Gly, Ala, Asp and Cys. It is demonstrated that when acylated at the N-terminus, nanostructures of varying size and shapes were formed. Investigations on the catalytic activity of these nanostructures under different conditions are presented. The findings on the correlation of peptide structure and nanostructure formation and/or catalytic activity are presented.Item Open Access Skewed X inactivation in an X linked nystagmus family resulted from a novel, p.R229G, missense mutation in the FRMD7 gene(BMJ Group, 2008) Kaplan, Y.; Vargel, I.; Kansu, T.; Akin, B.; Rohmann, E.; Kamaci, S.; Uz, E.; Ozcelik, T.; Wollnik, B.; Akarsu, N. A.Aims: This study aimed to identify the underlying genetic defect of a large Turkish X linked nystagmus (NYS) family. Methods: Both Xp11 and Xq26 loci were tested by linkage analysis. The 12 exons and intron-exon junctions of the FRMD7 gene were screened by direct sequencing. X chromosome inactivation analysis was performed by enzymatic predigestion of DNA with a methylation-sensitive enzyme, followed by PCR of the polymorphic CAG repeat of the androgen receptor gene. Results: The family contained 162 individuals, among whom 28 had NYS. Linkage analysis confirmed the Xq26 locus. A novel missense c.686C>G mutation, which causes the substitution of a conserved arginine at amino acid position 229 by glycine (p.R229G) in exon 8 of the FRMD7 gene, was observed. This change was not documented in 120 control individuals. The clinical findings in a female who was homozygous for the mutation were not different from those of affected heterozygous females. Skewed X inactivation was remarkable in the affected females of the family. Conclusions: A novel p.R229G mutation in the FRMD7 gene causes the NYS phenotype, and skewed X inactivation influences the manifestation of the disease in X linked NYS females.Item Open Access Supramolecular peptide nanofiber morphology affects mechanotransduction of stem cells(American Chemical Society, 2017-08) Arslan, Elif; Koc,, Meryem Hatip; Uysal, Ozge; Dikecoglu, Begum; Topal, Ahmet E.; Garifullin, Ruslan; Ozkan, Alper D.; Dana, A.; Hermida-Merino, D.; Castelletto, V.; Edwards-Gayle, C.; Baday, S.; Hamley, I.; Tekinay, Ayse B.; Güler, Mustafa O.Chirality and morphology are essential factors for protein function and interactions with other biomacromolecules. Extracellular matrix (ECM) proteins are also similar to other proteins in this sense; however, the complexity of the natural ECM makes it difficult to study these factors at the cellular level. The synthetic peptide nanomaterials harbor great promise in mimicking specific ECM molecules as model systems. In this work, we demonstrate that mechanosensory responses of stem cells are directly regulated by the chirality and morphology of ECM-mimetic peptide nanofibers with strictly controlled characteristics. Structural signals presented on l-amino acid containing cylindrical nanofibers (l-VV) favored the formation of integrin β1-based focal adhesion complexes, which increased the osteogenic potential of stem cells through the activation of nuclear YAP. On the other hand, twisted ribbon-like nanofibers (l-FF and d-FF) guided the cells into round shapes and decreased the formation of focal adhesion complexes, which resulted in the confinement of YAP proteins in the cytosol and a corresponding decrease in osteogenic potential. Interestingly, the d-form of twisted-ribbon like nanofibers (d-FF) increased the chondrogenic potential of stem cells more than their l-form (l-FF). Our results provide new insights into the importance and relevance of morphology and chirality of nanomaterials in their interactions with cells and reveal that precise control over the chemical and physical properties of nanostructures can affect stem cell fate even without the incorporation of specific epitopes.Item Open Access Synthesis and characterization of amino acid conjugates of oleanolic acid and their in vitro cytotoxic effect on HCC cell lines(Pakistan Journal of Pharmaceutical Sciences, 2014) Mustufa, Muhammad Ayaz; Hashmi, I. A.; Manzoor, S.; Ahmed, A.; Ahmed, V.; Aslam, A.; Özen, Çiğdem; Naqvi, N.; Öztürk, Mehmet; Ali, F. I.Oleanolic acid (3β-hydroxy-olean-12-en-28-oic acid; OA-01), a pentacyclic triterpene, exhibit a wide range of pharmacological and biological activities. We have isolated oleanolic acid from methanolic extract of Periploca aphylla, collected from surroundings of Karachi in the month of February. Furthermore, four known and two new C-28 amino acid conjugates of oleanolic acid were prepared to explore potential of these compounds on HCCs and one breast cancer cell line. Cytotoxic effects revealed that as compare to parent compound (OA-01), two derivatives OA-04 (p<0.0001) and OA-06 (p<0.01) showed significantly increased/higher inhibition rates.