Browsing by Subject "Aharonov-Bohm interferometers"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Electronic transmittance phase extracted from mesoscopic interferometers(2012) Tolea, M.; Moldoveanu V.; Dinu I.V.; Tanatar, BilalThe usual experimental set-up for measuring the wave function phase shift of electrons tunneling through a quantum dot (QD) embedded in a ring (i.e., the transmittance phase) is the so-called 'open' interferometer as first proposed by Schuster et al. in 1997, in which the electrons back-scattered at source and the drain contacts are absorbed by additional leads in order to exclude multiple interference. While in this case one can conveniently use a simple two-path interference formula to extract the QD transmittance phase, the open interferometer has also a number of draw-backs, such as a reduced signal and some uncertainty regarding the effects of the extra leads. Here we present a meaningful theoretical study of the QD transmittance phase in 'closed' interferometers (i.e., connected only to source and drain leads). By putting together data from existing literature and giving some new proofs, we show both analytically and by numerical simulations that the existence of phase lapses between consecutive resonances of the 'bare' QD is related to the signs of the corresponding Fano parameters - of the QD + ring system. More precisely, if the Fano parameters have the same sign, the transmittance phase of the QD exhibits a π lapse. Therefore, closed mesoscopic interferometers can be used to address the 'universal phase lapse' problem. Moreover, the data from already existing Fano interference experiments from Kobayashi et al. in 2003 can be used to infer the phase lapses. © 2012 Tolea et al.Item Open Access Measurement-induced decoherence in electronic interferometry at nanoscale(Elsevier B.V., 2008) Moldoveanu, V.; Tanatar, Bilal; Ţolea, M.We introduce a theoretical formalism describing a wide class of 'Which Path' experiments in mesoscopic/nanoscopic transport. The physical system involves a mesoscopic interferometer (e.g. an Aharonov-Bohm ring with embedded dots or a side-coupled quantum dot) which is electrostatically coupled to a nearby quantum point constriction. Due to the charge sensing effect the latter acts as a charge detector. Therefore the interference pattern can be monitored indirectly by looking at the current characteristics of the detector as shown in the experimental work of Buks et al. [E. Buks, R. Schuster, M. Heiblum, D. Mahalu, V. Umansky, Nature (London) 391 (1998) 871]. We use the non-equilibrium Green-Keldysh formalism and a second order perturbative treatment of the Coulomb interaction in order to compute the relevant transport properties. It is shown that in the presence of the Coulomb interaction the current through the detector exhibits oscillations as a function of the magnetic field applied on a single-dot AB interferometer. We also discuss the dependence of the visibility of the Aharonov-Bohm oscillations on the gate potential applied to the dot.Item Open Access Mesoscopic Fano effect in an Aharonov-Bohm interferometer Coulomb-coupled to a nearby quantum dot(Wiley, 2007) Tolea, M.; Moldoveanu, V.; Tanatar, BilalMotivated by the pionieering experiments of Buks et al. [Nature 391, 871 (1998)] we investigate the visibility of the Fano effect in a single-dot Aharonov-Bohm interferometer which is Coulomb-coupled to a nearby quantum dot. The latter acts as a 'Which Path Detector' and is coupled to two leads on which a finite bias is applied. Using the non-equilibrium Keldysh-Green function formalism we compute the currents through the detector and the interferometer. We take into account the first two contributions to the interaction selfenergy and emphasize the correction to the Landauer formula which appears beyond the single-particle approximation. Particular attention is given to the coherence properties of the interferometer in the presence of the electron-electron interaction between the embedded dot and the detector. We show that when the detector is subjected to a finite bias the amplitude of Aharonov-Bohm oscillations of the current through the interferometer decreases. The Fano line is in turn rather stable under interaction. Our results generalize an earlier work of Silva and Levit [Phys. Rev. B 63, 201309 (2001)] and complement the existing description of the controlled dephasing.