Mesoscopic Fano effect in an Aharonov-Bohm interferometer Coulomb-coupled to a nearby quantum dot

Date
2007
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Physica Status Solidi (C): Current Topics in Solid State Physics
Print ISSN
1862-6351
Electronic ISSN
Publisher
Wiley
Volume
4
Issue
2
Pages
430 - 432
Language
English
Journal Title
Journal ISSN
Volume Title
Series
Abstract

Motivated by the pionieering experiments of Buks et al. [Nature 391, 871 (1998)] we investigate the visibility of the Fano effect in a single-dot Aharonov-Bohm interferometer which is Coulomb-coupled to a nearby quantum dot. The latter acts as a 'Which Path Detector' and is coupled to two leads on which a finite bias is applied. Using the non-equilibrium Keldysh-Green function formalism we compute the currents through the detector and the interferometer. We take into account the first two contributions to the interaction selfenergy and emphasize the correction to the Landauer formula which appears beyond the single-particle approximation. Particular attention is given to the coherence properties of the interferometer in the presence of the electron-electron interaction between the embedded dot and the detector. We show that when the detector is subjected to a finite bias the amplitude of Aharonov-Bohm oscillations of the current through the interferometer decreases. The Fano line is in turn rather stable under interaction. Our results generalize an earlier work of Silva and Levit [Phys. Rev. B 63, 201309 (2001)] and complement the existing description of the controlled dephasing.

Course
Other identifiers
Book Title
Citation
Published Version (Please cite this version)