Browsing by Subject "Aging"
Now showing 1 - 20 of 38
- Results Per Page
- Sort Options
Item Open Access Age and gender alter synaptic proteins in zebrafish (Danio Rerio) models of normal and delayed aging(2017-07) Karoğlu, Elif TuğçeCognitive decline occurs during normal aging in some specific domains of cognitive abilities including but not limited to episodic memory, divided attention and executive functions, however, it is not a unitary decline since some cognitive domains, including vocabulary and implicit memory tend to be preserved and even improved at older ages. Normal aging is not associated with global and significant neuronal and synapse loss, yet subtle molecular alterations occurring in gene expression patterns, protein homeostasis, mitochondrial dynamics and hypofunction in the cholinergic system may account for the age related decline in some cognitive abilities. Additionally, males and females showed differential vulnerabilities against age-related alterations in the cognitive abilities, physiological integrity and subtle molecular dynamics. More direct relationships can be established between the age-related cognitive decline and subtle molecular changes by analyzing the elements of synaptic integrity, which could alter synaptic plasticity and result in the changes in learning and memory abilities. Post-synaptic 95 (PSD-95), gephyrin (GEP) and synaptophysin (SYP) are integral synaptic proteins and they could be attributed as indicators of excitatory post-synaptic, inhibitory post-synaptic and pre-synaptic integrities, respectively. The first aim of this study was to show effects of age and gender on the expression levels of PSD-95, GEP and SYP in young, middle-aged and old, female and male zebrafish cohorts. Significant age by gender interactions were revealed in the levels of PSD-95 and SYP. It was shown that PSD-95 and SYP levels tend to be preserved and increased in the female groups throughout the aging process, whereas, in male groups, expression levels of these proteins tend to be reduced at older ages. The second aim was to investigate whether ameliorating the cholinergic hypofunction might have beneficial effects on the aging-related protein expression alterations and check for sexually dimorphic patterns. For this aim old male and female zebrafish from a mutant line (ache), which has decreased levels of acetylcholinesterase and increased levels of acetylcholine, were compared with old male and female wildtype animals. In the ache old groups, significant increases in the expression levels of SYP and GEP were revealed compared to the wildtype, and also in the old ache females SYP expression was higher than the other groups. These studies emphasized the importance of gender and sexually dimorphic patterns in the context of aging andcholinergic manipulations could be a promising target of intervention to attenuate the effects of age-related synaptic alterations, which could have possible contributions to age-related cognitive decline. .Item Open Access Age related alterations of adult neurogenesis and astrocytes in Zebrafish (Danio Rerio)(2019-09) Ardıç, Narin IlgımBrain aging is marked by a decline in cognitive abilities and associated with neurodegenerative disorders. In order to identify appropriate interventions to change the course of brain aging and age-related neurological disorders, we should first understand the normal age-related changes. Previous studies claimed that there was a correlation between cognitive capacities and number of neurons. However, recent studies have shown no statistically significant change in total neuron number during healthy aging. Therefore, further studies are required to understand the reasons behind these changes in the brain. One possibility could be the age-related alterations in neuronal lineage and glial markers. Thus, this study aims to show the protein levels, distributions, and localizations of key neuronal lineage and glial markers, which include neural progenitor, early neuronal, immature neuron, and mature neuron and glial markers during healthy aging of the zebrafish brain. For this aim, we measured NeuN (Fox-3, Rbfox3, or Hexaribonucleotide Binding Protein-3), MAP-2 (Microtubule-associated protein 2), HuC (ELAV like neuron-specific RNA binding protein 3), DCAMKL-1 (Doublecortin-like kinase 1), and GFAP (Glial fibrillary acidic protein) with immunohistochemistry and western blot techniques. First, the immunohistochemistry technique was applied on two specific proliferation areas, pallium and optic tectum, to detect the changes in the number of neuronal lineages and glial marker. The results indicated no statistically significant changes between young and old groups. Secondly, we performed whole-brain immunohistochemistry of all markers and quantified every image by manually counting the positive signal. We found that aging did not have an effect on the distribution and expression of the markers, even in the whole brain. Finally, Western-blot was performed in whole brain lysates to compare neuron number and protein level changes. Western-blot results indicated an age-related statistically significant decline in immature neuron marker for specifically males and glial marker for specifically females. The protein level of neural progenitor marker showed the significant decline in males during aging but no change between two age groups. Results of the mature neuron antibody revealed that the protein levels were consistent through aging and did not show variation. Our results overall support the finding that the number of neurons and glia do not change during aging since the numbers of markers were not show statistically significant changes during the aging process in the proliferation areas of the zebrafish brain. However, protein levels showed changes between age and gender groups. Thus, this study shows that understanding changes in the number of cells need to count; protein level is not representative, and zebrafish is an appropriate model for brain aging studies.Item Open Access Age-dependent effects of short-term intermittent fasting and rapamycin treatment in Zebrafish (Danio Rerio) brain(2020-05) Birand, Ergül Dilan ÇelebiWorld populations are rapidly aging, and there is an urgent need to develop interventions that prevent or reverse age-related deterioration of health. To date, several approaches have been developed to extend health span. Among these, non genetic interventions have a higher potential to be utilized in translational studies. Caloric restriction (CR) and its pharmacological mimetic rapamycin, are two applications that have been shown to reliably extend life and health span across species. Despite a growing body of knowledge on how CR and rapamycin show their beneficial effects, their molecular mechanisms in the brain are not completely understood. Furthermore, most studies applied life-long CR, which is not suitable for translational research. To fill this gap, we investigated whether short-term durations of a CR approach intermittent fasting (IF) or rapamycin altered cellular and molecular markers of critical processes in the brain as well as metabolic parameters in the body. To assess how the age of the subjects affect the outcome of the treatments, we included young (6-10 months old) and old (26-31 months) zebrafish, which has recently emerged as a suitable model for gerontological research. Our results demonstrated that IF decreased whole-body glucose and cortisol levels, and increased neural progenitor marker DCAMKL1 in young and old animals. While this proliferation-promoting effect was preceded by suppression of mTOR activity in young, the upregulation of foxm1 and reduced autophagic flux as measured by LC3 II/LC3-I ratio were observed in old animals. Rapamycin, on the other hand, did not alter the metabolic parameters and induced entirely different molecular profiles at young and old ages. The most notable changes in young animals were reduced mTOR activity, LC3-II/LC3-I ratio and expression levels of a global proliferation marker PCNA. In old animals, the marker of activated astrocytes (i.e. GFAP) was decreased, indicating lower neuroinflammation, whereas excitatory-inhibitory balance as measured by PSD-95/Gephyrin ratio was shifted towards a more excitatory state. These results suggested that IF and rapamycin induced distinct metabolic profiles in young and old animals. Furthermore, there was an age dependent reciprocal relationship between proliferation and autophagy, which might be partly due to differential regulation of mTOR activity. Interestingly, rapamycin treatment was more effective in suppressing mTOR activity in young animals, and compared to IF. Nevertheless, these results suggested that rapamycin crosses the blood-brain barrier in zebrafish, and that short-term durations of IF or rapamycin were sufficient to alter the expression levels of key proteins involved in critical mechanisms in the brain.Item Open Access Aging alters the molecular dynamics of synapses in a sexually dimorphic pattern in zebrafish (Danio rerio)(Elsevier, 2017-06) Karoglu, Elif Tugce; Halim, Dilara Ozge; Erkaya, Bahriye; Altaytas, Ferda; Arslan-Ergul, Ayca; Konu, Ozlen; Adams, Michelle M.The zebrafish has become a popular model for studying normal brain aging due to its large fecundity, conserved genome, and available genetic tools; but little data exists about neurobiological age-related alterations. The current study tested the hypothesis of an association between brain aging and synaptic protein loss across males and females. Western blot analysis of synaptophysin (SYP), a presynaptic vesicle protein, and postsynaptic density-95 (PSD-95) and gephyrin (GEP), excitatory and inhibitory postsynaptic receptor-clustering proteins, respectively, was performed in young, middle-aged, and old male and female zebrafish (Danio rerio) brains. Univariate and multivariate analyses demonstrated that PSD-95 significantly increased in aged females and SYP significantly decreased in males, but GEP was stable. Thus, these key synaptic proteins vary across age in a sexually dimorphic manner, which has been observed in other species, and these consequences may represent selective vulnerabilities for aged males and females. These data expand our knowledge of normal aging in zebrafish, as well as further establish this model as an appropriate one for examining human brain aging.Item Open Access Caloric restriction reinforces the stem cell pool in the aged brain without affecting overall proliferation status(Elsevier BV, 2022-11-01) Erbaba, Begün; Macaroğlu, Duygu; Avcı, N. İlgim Ardıç; Ergül , Ayça Arslan; Adams, Michelle M.Overfeeding (OF) and obesity increase the risk for brain aging and neurodegenerative diseases due to increased oxidative stress and neuroinflammation, which likely contribute to cellular dysfunction. In contrast, caloric restriction (CR) is an intervention known for its effects on extending both life- and health-span. In the current study, the effects on the aging brain of two short-term feeding regimens, OF and CR, were investigated. We applied these diets for 12 weeks to both young and aged zebrafish. We performed protein and mRNA level analysis to examine diet-mediated effects on any potential age-related alterations in the brain. Markers implicated in the regulation of brain aging, cell cycle, proliferation, inflammation, and cytoskeleton were analyzed. The most prominent result observed was a downregulation in the expression levels of the stem cell marker, Sox2, in CR-fed animals as compared to OF-fed fish. Furthermore, our data highlighted significant age-related downregulations in Tp53, Myca, and L-plastin levels. The multivariate analyses of all datasets suggested that as opposed to OF, the adaptive mechanisms increasing lifespan via CR are likely exerting their effects by reinforcing the stem cell pool and downregulating inflammation. The data reveal important therapeutic targets with respect to the state of nutrient uptake for the slowing down of the detrimental effects of aging, resulting in a healthy and extended lifespan, as well as lowering the risk for neurodegenerative disease.Item Open Access Dietary and pharmacological interventions that inhibit mammalian target of rapamycin activity alter the brain expression levels of neurogenic and glial markers in an age-and treatment-dependent manner(Mary Ann Liebert, 2020) Çelebi-Birand, Dilan; Ardıç, Narin İlgim; Karoğlu-Eravşar, Elif Tuğçe; Şengül, Göksemin Fatma; Kafalıgönül, Hulusi; Adams, Michelle M.Intermittent fasting (IF) and its mimetic, rapamycin extend lifespan and healthspan through mechanisms that are not fully understood. We investigated different short-term durations of IF and rapamycin on cellular and molecular changes in the brains of young (6–10 months) and old (26–31 months) zebrafish. Interestingly, our results showed that IF significantly lowered glucose levels while increasing DCAMKL1 in both young and old animals. This proliferative effect of IF was supported by the upregulation of foxm1 transcript in old animals. Rapamycin did not change glucose levels in young and old animals but had differential effects depending on age. In young zebrafish, proliferating cell nuclear antigen and the LC3-II/LC3-I ratio was decreased, whereas glial fibrillary acidic protein and gephyrin were decreased in old animals. The changes in proliferative markers and a marker of autophagic flux suggest an age-dependent interplay between autophagy and cell proliferation. Additionally, changes in glia and inhibitory tone suggest a suppressive effect on neuroinflammation but may push the brain toward a more excitable state. Mammalian target of rapamycin (mTOR) activity in the brain following the IF and rapamycin treatment was differentially regulated by age. Interestingly, rapamycin inhibited mTOR more potently in young animals than IF. Principal component analysis supported our conclusion that the regulatory effects of IF and rapamycin were age-specific, since we observed different patterns in the expression levels and clustering of young and old animals. Taken together, our results suggest that even a short-term duration of IF and rapamycin have significant effects in the brain at young and old ages, and that these are age and treatment dependent.Item Open Access The difficult childhood of an adult: aging and maturity in Witold Gombrowicz’s pornografia(Elsevier, 2020) Just, DanielMaturity and immaturity are the hallmarks of Witold Gombrowicz’s literary texts. They were introduced in his first novel, Ferdydurke, and an early collection of short stories, Memoirs from a Time of Immaturity, and continued to play a central role in his fiction and nonfiction works, including the Diary, A Kind of Testament, and the penultimate novel, Pornografia. Although Gombrowicz has been widely regarded as a staunch critic of maturity and defender of immature spontaneity, playfulness, and formlessness, this view is largely based on his earlier writings. Later works offer a more complex image of Gombrowicz. Pornografia, in particular, no longer pits immaturity against maturity with the goal of discrediting the latter through humor and irony. Instead, it experiments with the possibility of a new relationship between the two, a relationship which would ameliorate the discontents that often come with aging.Item Open Access Effects of aging and short-term dietary restriction on neurogenesis and cellular senescence in the zebrafish (Danio Reio) brain(2016-09) Erbaba, BegünCurrently we know from rodent and fish studies that adult neuron generation is reduced but still continues in old animals with a dynamic change throughout aging. This process occurs mainly in hippocampal region, which is thought to be analogous to a region in telencephalon of the zebrafish brain. Changes in this neuron turnover are thought to be one contributing factor to cognitive change occuring with advanced age. Since we know that external factors can affect the process of neurogenesis, and as previous studies showed, dietary restriction (DR) extends life span; here, we hypothesized that DR should also alleviate several age associated alterations. In order to test this, we applied a 10-week feeding regimen to young (8-9 months) and old (26-32.5 months) male and female fish. We had two dietary regimen groups, one fed Ad libitum and one fed with a DR that was a pattern of every-other-day feeding, which is a widely accepted method of DR. A total of 124 animals were used in this study. As a result, a significant loss of body weight in both young and old DR groups was observed without an effect on body lengths. To be able to label actively dividing cells we used Bromodeoxyuridine (BrdU), which is a thymidine analog. It is injected into the fish intraperitoneally prior to euthanasia. Four hours later the brains were dissected and fixed for sectioning. We obtained cross-sectional slices of 50 m thickness with a vibratome, performed immunostaining with antibodies against BrdU, NeuN (neuronal marker), HuC (neuronal marker); and visualized the brain sections with confocal microscopy forming 3D reconstructed pictures. We counted the BrdU positive cells in all brain slices, forming a regional map of the telencephalic region of zebrafish brain, in which we documented the specific regions where the adult neurogenesis dominates the most and least. Our results confirmed that there are more BrdU positive cells in young animals than olds, and that age is correlated with an increased senescence associated fi-galactosidase (SA-fi-gal) activity, along with shortened telomere lengths. The 10-week diet was not found to be creating a significant change in cell proliferation rates, cellular senescence, or the differentiation pattern of glial cells. However, it was demonstrated to have a shortening effect on telomere lengths. Our data suggest that the potential effects of DR could be related to telomere regulation. Therefore, in order to detect differentially expressed genes that could be related to this mechanism between the groups, we performed microarray analysis with differing DR regimens. Initial data indicated no significant effects of a 4-week diet on gene expression differences among aged fish. Further analysis of the different periods of DR will be performed. Taken together, the effects of age are more robust than a short-term DR.Item Unknown Effects of aging on gene expression levels of inflammatory, cytoskeletal and microglial markers in the brain using the zebrafish (Danio Rerio) model organism(2021-01) Aydoğan, Hande ÖzgeAge-related cognitive decline burdens the elderly population, limiting their abil-ity to socialize and be independent. To be able to develop proper treatments, healthy aging should be examined. Previous studies focusing on healthy brain aging revealed that abnormal microglial activation was observed. Aging microglia exhibits 0partial loss of motility due to cytoskeletal changes, leading to decreases in their ability to respond to environmental cues. Thus, a more inflammatory phe-notype was observed in microglia. These disruptions of the previously established homeostasis in the brain could be the underlying reason for cognitive decline ex-perienced during aging. To understand these changes during aging in the brain, cytoskeletal, microglial, and inflammation-related markers were investigated by using both in silico and in vivo approaches. In silico analyses were performed on mice hippocampus and the whole brain revealed that the genes involved in the actin cytoskeleton reorganization (Arpc1b), neurogenesis (Erbb4), and proinflam-matory related pathways (Il1b, P2x7r, Elf2b) showed differential gene expression levels among different age groups, genders, and tissue of origin. On the other hand, no differential expression was observed in microglial (Coro1a and Aif1) and anti-inflammatory markers (Tgfb1 and Il10). To further validate these re-sults in vivo, quantitative polymerase chain reaction (qPCR) was performed on young and old zebrafish brains. According to the results, only two genes showed marginally significant differences among young and old brains: arpc1b and p2x7r. These results collectively could mean 1) the overall microglia population does not change during aging, 2) the brain does not exhibit imbalances in terms of pro-and anti-inflammatory cytokines, and 3) neurogenesis. Furthermore, the signifi-cant changes observed in arpc1b and p2x7r indicated the iii iv importance of the cytoskeleton and inflammation-related pathways in the correct functioning of the cells. Therefore, this study showed that in silico analysis are the reliable indica-tors of in vivo experiments, zebrafish can be used as a gerontological model, and the importance of cytoskeleton in motile cells. However, to understand these de-scribed relations, further investigation on the protein level of these genes should be done.Item Unknown Effects of aging, diet and potential genetic interventions on the levels of Smurf2 and its interacting partners in Zebrafish (Danio Rerio) brain(2020-09) Şaşik, Melek Umay TüzAging is a natural process that is ultimate combination of numerous intrinsic and extrinsic changes in an organism. Contrary the common belief, brain aging is not a loss of neurons while it has been shown that subtle cellular and synaptic alterations have contribution to brain aging. Therefore, the molecular and cellular alterations may give more insight into the brain aging process. There are some hallmarks of aging that are common features in different organisms including genomic instability, telomere attrition, cellular senescence. There are some common factors with the ability to regulate more than one of the hallmarks of aging such as Smurf2. HECTdomain E3 ubiquitin ligase Smurf2 has several roles in the cellular processes for example, telomere attrition and cellular senescence. Moreover, its gene expression is higher in the aged brain. Although there are several publications about Smurf2, most of them focused on its role in cancer. We believed that Smurf2 levels should be examined in terms of brain aging. The first aim of the study was to examine the levels of Smurf2 and its interacting partners across lifespan. Although the Smurf2 protein level was not increased significantly in the whole zebrafish brain, its protein level was upregulated significantly in telencephalon and cerebellum. Also, subcellular protein fractionation demonstrated an enriched Smurf2 level in the cytosolic part. In the case of gene expression levels, smurf2 level was significantly higher in aged whole brain although its expression was downregulated during aging in telencephalon and cerebellum. In addition, the levels of mdm2, ep300a and sirt1 were lower in the aged telencephalon. According to multivariate analysis there is a potential balance between Smurf2-mediated ubiquitination, ep300a-mediated acetylation and Sirt1- mediated deacetylation but with advancing age, this balance may disrupt and other regulatory genes should also take a role to sustain cellular stability. The second aim was to investigate the roles of Smurf2 on brain aging with the help of genetic interventions including inducible knockin, stable knockout or transient knockdown. Since stable knockin and knockout models should be genotyped before further investigations, the genotyping and phenotyping methods were employed to find an efficient and reliable way. Also, transient knockdown via Vivo-morpholino was applied to adult brain and efficient post injection times of two different morpholinos were identified in order to examine the effects of Smurf2 knockdown in both young and old zebrafish. Lastly, it was aimed to examine the effects of non-genetic interventions including dietary regimens and pharmacological compounds on the gene expression of smurf2 and its interacting partners and the levels of the neuronal proteins and proliferation/senescence proteins. The opposing short-term dietary regimens, overfeeding and caloric restriction, were altered the levels of neuronal proteins, HuC and DCAMKL1, and their relation with proliferation and senescence proteins during aging. Also, the gene expression levels of smurf2 and interacting partners except tp53 was not influenced by dietary regimens and aging in terms of whole brain. Also, multivariate analysis indicated that the correlations among smurf2, mdm2, ep300a and sirt1 were conserved in both young and old ages independent to dietary regimen which may imply that the balance between ubiquitination, acetylation and deacetylation is maintained in order to provide cellular stability during aging. Heclin, an inhibitor of HECT E3 ligases, were employed to inhibit Smurf2 activity. Before using in adult zebrafish, heclin was applied to embryos to see its effects. The higher dose of heclin decreased the survival ratio and altered the gene expression levels of downstream gene drastically. So, moderate dose of heclin should be applied to the adult brain and neuronal markers should be examined to observe target effects rather than off-target, unspecific impacts. Taken together, Smurf2 has potential roles during aging and it could be a promising target to delay the brain aging process and probably the onset of age-related cognitive decline.Item Open Access Effects of caloric restriction on the antagonistic and integrative hallmarks of aging(Elsevier, 2021) Erbaba, Begün; Arslan-Ergül, Ayça; Adams, Michelle M.Aging is a significant risk factor for cognitive decline associated with neurodegenerative diseases, which makes understanding what promotes ‘healthy brain aging’ very important. Studies suggest that caloric restriction (CR) is a non-genetic intervention that reliably extends life- and healthspan. Here, we review the CR literature related to both the subject of aging and alterations in cell cycle machinery, especially surrounding the regulation of the E2F/DP1 complex, to elucidate the cellular protection mechanisms in the brain induced via dietary applications. The alterations extending lifespan via CR appear to exert their effects by promoting survival of individual cells, downregulating cell proliferation, and inducing stem cell quiescence, which results in keeping the stem cell reserve for extreme needs. This survival instinct of cells is believed to cause some molecular adaptations for their maintenance of the system. Avoiding energy waste of proliferation machinery promotes the long term survival of the individual cells and this is due to adaptations to the limited nutrient supply in the environment. Such a protective mechanism induced by diet could be promoted via the downregulation of crucial cell cycle-related transcription activators. This review article aims to bring attention to the importance of molecular adaptations induced by diet that promote healthy brain aging. It will provide insights into alternative targets for new treatments or neuroprotective approaches against neurodegenerative pathophysiologies.Item Open Access Endothelial progenitor cells display clonal restriction in multiple myeloma(BioMed Central Ltd., 2006) Braunstein, M.; Özçelik, T.; Baǧişlar, S.; Vakil, V.; Smith, E. L. P.; Dai, K.; Akyerli, C. B.; Batuman O. A.Background: In multiple myeloma (MM), increased neoangiogenesis contributes to tumor growth and disease progression. Increased levels of endothelial progenitor cells (EPCs) contribute to neoangiogenesis in MM, and, importantly, covary with disease activity and response to treatment. In order to understand the mechanisms responsible for increased EPC levels and neoangiogenic function in MM, we investigated whether these cells were clonal by determining X-chromosome inactivation (XCI) patterns in female patients by a human androgen receptor assay (HUMARA). In addition, EPCs and bone marrow cells were studied for the presence of clonotypic immunoglobulin heavy-chain (IGH) gene rearrangement, which indicates clonality in B cells; thus, its presence in EPCs would indicate a close genetic link between tumor cells in MM and endothelial cells that provide tumor neovascularization. Methods: A total of twenty-three consecutive patients who had not received chemotherapy were studied. Screening in 18 patients found that 11 displayed allelic AR in peripheral blood mononuclear cells, and these patients were further studied for XCI patterns in EPCs and hair root cells by HUMARA. In 2 patients whose EPCs were clonal by HUMARA, and in an additional 5 new patients, EPCs were studied for IGH gene rearrangement using PCR with family-specific primers for IGH variable genes (VH). Results: In 11 patients, analysis of EPCs by HUMARA revealed significant skewing (≥ 77% expression of a single allele) in 64% (n = 7). In 4 of these patients, XCI skewing was extreme (≥ 90% expression of a single allele). In contrast, XCI in hair root cells was random. Furthermore, PCR amplification with VH primers resulted in amplification of the same product in EPCs and bone marrow cells in 71 % (n = 5) of 7 patients, while no IGH rearrangement was found in EPCs from healthy controls. In addition, in patients with XCI skewing in EPCs, advanced age was associated with poorer clinical status, unlike patients whose EPCs had random XCI. Conclusion: Our results suggest that EPCs in at least a substantial subpopulation of MM patients are related to the neoplastic clone and that this is an important mechanism for upregulation of tumor neovascularization in MM. © 2006 Braunstein et al; licensee BioMed Central Ltd.Item Open Access Environmental enrichment applied with sensory components prevents age-related decline in synaptic dynamics: Evidence from the zebrafish model organism(Elsevier BV, 2021-07-01) Eravşar, Elif Tuğçe Karoğlu; Sasık, Melek Umay Tuz; Adams, Michelle M.Progression of cognitive decline with or without neurodegeneration varies among elderly subjects. The main aim of the current study was to illuminate the molecular mechanisms that promote and retain successful aging in the context of factors such as environment and gender, both of which alter the resilience of the aging brain. Environmental enrichment (EE) is one intervention that may lead to the maintenance of cognitive processing at older ages in both humans and animal subjects. EE is easily applied to different model organisms, including zebrafish, which show similar age-related molecular and behavioral changes as humans. Global changes in cellular and synaptic markers with respect to age, gender and 4-weeks of EE applied with sensory stimulation were investigated using the zebrafish model organism. Results indicated that EE increases brain weight in an age-dependent manner without affecting general body parameters like body mass index (BMI). Age-related declines in the presynaptic protein synaptophysin, AMPA-type glutamate receptor subunits and a post-mitotic neuronal marker were observed and short-term EE prevents these changes in aged animals, as well as elevates levels of the inhibitory scaffolding protein, gephyrin. Gender-driven alterations were observed in the levels of the glutamate receptor subunits. Oxidative stress markers were significantly increased in the old animals, while exposure to EE did not alter this pattern. These data suggest that EE with sensory stimulation exerts its effects mainly on age-related changes in synaptic dynamics, which likely increase brain resilience through specific cellular mechanisms.Item Unknown Essays on macroeconomics(2015-09) Kantur, ZeynepThis dissertation consists of three essays on two topics in macroeconomics. The first essay focuses on the monetary policy implications in an aging society. The second and third essays revisit the famous Shimer puzzle in a theoretical and an empirical framework in a different perspective. The first essay shows the impact of aging on effectiveness of monetary policy. To do so, it introduces an OLG-DNK framework where the demand side is represented by a two period overlapping generations setup and the supply side of the economy follows a New Keynesian framework. The model enables the study of the interaction of monetary policy with demographics in a coherent general equilibrium model. The main finding is that this merger of two basic strands of the macroeconomics literature implies monetary policy should be expected to be less effective as societies age since the interest rate sensitivity of real economic activity declines as the population ages. The second essay studies the effect of employment-to-employment ows in a New Keynesian model with labor market frictions. Although New Keyne sian models with labor market frictions found an increase in unemployment and a decrease in labor market tightness in response to a positive technology shock (which appears to be in line with the recent empirical findings), the volatilities of these variables are not as high as their empirical counterparts. In that regard, we assume two types of firms which offer different wage levels, thereby incentivizing low-paid agents to search on-the-job. Differently from the literature, the main source of wage dispersion is the assumption of different bargaining powers of firms. The proposed model generates a higher volatility of unemployment and labor market tightness in response to a positive technology shock compared to the model without on-the-job search. Moreover, it is shown that bargaining power and on-the-job search intensity have an amplifying effect on the unemployment rate. Finally, the last essay is an empirical application of the theoretical model proposed in Chapter 3. This essay revisits the Shimer (2005) puzzle by covering a longer period, 1951-2014, than Shimer's exercise. Firstly, essay shows some stylized facts on U.S. labor market by using raw data and a structural VAR model. Then, the study tests the performance of the model utilized in Chapter 3. The structural VAR models shows that there is a positive correlation between productivity and unemployment and negative correlation between productivity and labor market tightness conditional to technology shock. In addition, I show that the model with on-the-job search component adds more amplification to the standard New Keynesian model with labor market frictions and it is capable of generating both the magnitude and the sign of the fluctuations of labor market variables to productivity shocks.Item Open Access Expression levels of SMAD specific E3 ubiquitin protein ligase 2 (Smurf2) and its interacting partners show region-specific alterations during brain aging(Elsevier, 2020) Tüz-Şaşik, Melek Umay; Karoğlu-Eravşar, Elif Tuğce; Kınalı, M.; Arslan-Ergül, A.; Adams, Michelle MarieAging occurs due to a combination of several factors, such as telomere attrition, cellular senescence, and stem cell exhaustion. The telomere attrition-dependent cellular senescence is regulated by increased levels of SMAD specific E3 ubiquitin protein ligase 2 (smurf2). With age smurf2 expression increases and Smurf2 protein interacts with several regulatory proteins including, Smad7, Ep300, Yy1, Sirt1, Mdm2, and Tp53, likely affecting its function related to cellular aging. The current study aimed at analyzing smurf2 expression in the aged brain because of its potential regulatory roles in the cellular aging process. Zebrafish were used because like humans they age gradually and their genome has 70% similarity. In the current study, we demonstrated that smurf2 gene and protein expression levels altered in a region-specific manner during the aging process. Also, in both young and old brains, Smurf2 protein was enriched in the cytosol. These results imply that during aging Smurf2 is regulated by several mechanisms including post-translational modifications (PTMs) and complex formation. Also, the expression levels of its interacting partners defined by the STRING database, tp53, mdm2, ep300a, yy1a, smad7, and sirt1, were analyzed. Multivariate analysis indicated that smurf2, ep300a, and sirt1, whose proteins regulate ubiquitination, acetylation, and deacetylation of target proteins including Smad7 and Tp53, showed age- and brain region-dependent patterns. Our data suggest a likely balance between Smurf2- and Mdm2-mediated ubiquitination, and Ep300a-mediated acetylation/Sirt1-mediated deacetylation, which most possibly affects the functionality of other interacting partners in regulating cellular and synaptic aging and ultimately cognitive dysfunction.Item Open Access Expression levels of TRPC1 and TRPC6 ion channels are reciprocally altered in aging rat aorta: implications for age-related vasospastic disorders(American Aging Association, 2010) Erac, Y.; Selli, C.; Kosova, B.; Akcali, K. C.; Tosun, M.We previously showed that the expression of transient receptor potential canonical (TRPC)6 ion channel elevated when TRPC1 was knocked down in A7r5 cultured vascular smooth muscle cells. Therefore, the purpose of this study was to explore whether TRPC6 is also upregulated in aging rat aorta comparable to that of TRPC1 in longitudinal in vivo aging model. We further investigated a possible causal relationship between altered phenylephrine-induced contractions and the expression levels of TRPC6, a purported essential component of alpha-adrenergic receptor signaling in aging aorta. Immunoblot analysis showed that TRPC1 protein levels significantly decreased whereas TRPC6 increased drastically in aorta from 16- to 20-month-old rats compared to that from 2 to 4 months. Immunohistochemical data demonstrated spatial changes in TRPC6 expression within the smooth muscle layers along with increased detection in the adventitia of the aged rat aorta. The phenylephrine-induced contractions were potentiated in aging aorta. In conclusion, based on this aging model, TRPC6 overexpression could be related with TRPC1 downregulation and might be responsible for the increased adrenoceptor sensitivity which contributes to the development of age-related vasospastic disorders. © American Aging Association 2010.Item Open Access Expression of key synaptic proteins in Zebrafish (Danio Rerio) brain following caloric restriction and its mimetic and their relationship with gender(2017-01) Dede, AyşegülAging is a progressive decline of physiological functioning and metabolic processes. Among all the organs, the brain seems to be the most vulnerable part of the body to the age-related changes because of the relatively high consumption of oxygen and glucose as compared to other organs. Both structural and cognitive changes occur during the aging process. A great effort has been spent to ameliorate the outcomes occurring within the brain as a result of aging. Caloric restriction (CR) is considered to be the only non-genetic intervention which decreases age-related cognitive decline. Rapamycin (RAP) has become a candidate drug which was shown to mimic the effects of CR by blocking the nutrient-sensing pathway, the mammalian target of Rapamycin, (mTOR) pathway. The first aim of this study was to investigate the expressions of key synaptic proteins; gephyrin, PSD-95 and synaptophysin, which are involved in the synaptic plasticity, after short-term (4 weeks) CR and RAP interventions in young and old, male and female zebrafish. The second aim was to investigate whether the expression of glutamate receptor subunits, NR2B and GluR2/3, display a sexually dimorphic pattern in middle age zebrafish. It was found that there was no significant difference in the expression of key synaptic proteins between the CR and RAP animal groups as compared to the ad libitium (AL) fed group and also no significance was found in the expression of NR2B and GluR2/3 in middle-aged male and female zebrafish. Highlighted studies in this thesis demonstrate that short-term (4 weeks) of CR and RAP treatments were too short to observe an effect in the expression level of gephyrin, synaptophysin, and PSD-95, and in the middle age, expression of NR2B and GluR2/3 did not display sexually dimorphic pattern. Our initial results of key synaptic protein levels indicate that they are stable throughout aging with respect to gender and CR interventions.Item Open Access Gene expression changes in aging zebrafish (Danio rerio) brains are sexually dimorphic(BioMed Central, 2014) Arslan-Ergül, Ayça; Adams, Michelle M.Background: Brain aging is a multi-factorial process due to both genetic and environmental factors. The zebrafish has recently become a popular model organism for examining aging and age-related diseases because as in humans they age gradually and exhibit cognitive decline. Few studies have examined the biological changes in the aging brain that may contribute to these declines and none have examined them within individuals with respect to gender. Our aim was to identify the main genetic pathways associated with zebrafish brain aging across gender. We chose males and females from specific age groups (young, 7.5-8.5 months and old, 31-36 months) based on the progression of cognitive decline in zebrafish. RNA was isolated from individual brains and subjected to microarray and qPCR analysis. Statistical analyses were performed using a two-way ANOVA and the relevant post-hoc tests. Results: Our results demonstrated that in the brains of young and old male and female zebrafish there were over 500 differentially expressed genes associated with multiple pathways but most notably were those related to neurogenesis and cell differentiation, as well as brain and nervous system development. Conclusions: The gene expression of multiple pathways is altered with age and differentially expressed in males and females. Future studies will be aimed at determining the causal relationships of age-related changes in gene expression in individual male and female brains, as well as possible interventions that counteract these alterations.Item Unknown Her yazı zamana bir yolculuk; 1983 yılında yuvarlak yaş dönümleri(1984) Oktay, AhmetItem Open Access Housing for the aging population(Springer, 2007-04) Demirkan, H.Based on the concept of 'aging in place,' design of houses in the past years are explored. Design features in the built environment become barriers for aging people with functional limitations. Initially, houses were designed according to the required needs of the user with the physical limitations. Later, adaptable house design was introduced that allows the house to meet the specific needs of the user, while maintaining the appearance of the house until more obvious accessibility features are needed. Today, 'design for all' is recognised as a tool for ensuring physical accessibility for aging people. The holistic perspective embedded in the universal design theory should be systematically and consistently developed during the design process. © European Group for Research into Elderly and Physical Activity (EGREPA) 2007.