Browsing by Subject "Agents"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Distributed scheduling: a review of concepts and applications(Taylor & Francis, 2010) Toptal, A.; Sabuncuoglu, I.Distributed scheduling (DS) is an approach that enables local decision makers to create schedules that consider local objectives and constraints within the boundaries of the overall system objectives. Local decisions from different parts of the system are then integrated through coordination and communication mechanisms. Distributed scheduling attracts the interest of many researchers from a variety of disciplines, such as computer science, economics, manufacturing, and service operations management. One reason is that the problems faced in this area include issues ranging from information architectures, to negotiation mechanisms, to the design of scheduling algorithms. In this paper, we provide a survey and a critical analysis of the literature on distributed scheduling. While we propose a comprehensive taxonomy that accounts for many factors related to distributed scheduling, we also analyse the body of research in which the scheduling aspect is rigorously discussed. The focus of this paper is to review the studies that concern scheduling algorithms in a distributed architecture, not, for example, protocol languages or database architectures. The contribution of this paper is twofold: to unify the literature within our scope under a common terminology and to determine the critical design factors unique to distributed scheduling and in relation to centralised scheduling.Item Open Access Statistical properties of genetic learning in a model of exchange rate(Elsevier BV, 2000) Arifovic, J.; Gençay, R.We study statistical properties of the time series of the exchange rate data generated in the environment where agents update their savings and portfolio decisions using the genetic algorithm. The genetic algorithm adaptation takes place within an overlapping generations model with two currencies and the free-trade, flexible exchange rate system. The theoretical model implies a constant exchange rate under the perfect foresight assumption. Under the genetic algorithm learning, the model's equilibrium dynamics is not constant but exhibits bounded oscillations. The time series analysis of the data indicates that the dynamics of the exchange rate returns is chaotic. Out-of-equilibrium inequality of rates of return on two currencies prompts the genetic algorithm agents to take advantage of the arbitrage opportunities by increasing the amount of the currency with higher rate of return in their portfolios. This profit seeking results in chaotic patterns of the exchange rate series. (C) 2000 Elsevier Science B.V. All rights reserved.