BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Acetonitrile"

Filter results by typing the first few letters
Now showing 1 - 3 of 3
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Electroinitiated polymerization of 2-chloroethylvinyl ether
    (1998) Kalaycioglu, E.; Toppare L.; Yagci, Y.
    The electroinitiated polymerization of 2-chloroethylvinyl ether via controlled potential conditions has been achieved. The kinetics of the polymerization were determined by cyclic voltammetry at different temperatures in dichloromethane (DM) and acetonitrile (AN). The post-polymerization kinetics were followed with a similar technique. It was found that polymerization was twice as fast in DM as in AN. In DM, both the polymerization and the post-polymerization rates increased with decreasing temperature, whereas in AN the reverse behavior was observed.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Highly sensitive determination of 2, 4, 6-trinitrotoluene and related byproducts using a diol functionalized column for high performance liquid chromatography
    (Public Library of Science, 2014) Gumuscu, B.; Erdogan, Z.; Güler, Mustafa O.; Tekinay, T.
    In this work, a new detection method for complete separation of 2,4,6-trinitrotoluene (TNT); 2,4-dinitrotoluene (2,4-DNT); 2,6-dinitrotoluene (2,6-DNT); 2-aminodinitrotoluene (2-ADNT) and 4-aminodinitrotoluene (4-ADNT) molecules in high-performance liquid-chromatography (HPLC) with UV sensor has been developed using diol column. This approach improves on cost, time, and sensitivity over the existing methods, providing a simple and effective alternative. Total analysis time was less than 13 minutes including column re-equilibration between runs, in which water and acetonitrile were used as gradient elution solvents. Under optimized conditions, the minimum resolution between 2,4-DNT and 2,6-DNT peaks was 2.06. The recovery rates for spiked environmental samples were between 95-98%. The detection limits for diol column ranged from 0.78 to 1.17 μg/L for TNT and its byproducts. While the solvent consumption was 26.4 mL/min for two-phase EPA and 30 mL/min for EPA 8330 methods, it was only 8.8 mL/min for diol column. The resolution was improved up to 49% respect to two-phase EPA and EPA 8330 methods. When compared to C-18 and phenyl-3 columns, solvent usage was reduced up to 64% using diol column and resolution was enhanced approximately two-fold. The sensitivity of diol column was afforded by the hydroxyl groups on polyol layer, joining the formation of charge-transfer complexes with nitroaromatic compounds according to acceptor-donor interactions. Having compliance with current requirements, the proposed method demonstrates sensitive and robust separation. © 2014 Gumuscu et al.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Spectroelectrochemistry of potassium ethylxanthate, bis(ethylxanthato)nickel(II) and tetraethylammonium tris(ethylxanthato)-nickelate(II)
    (Royal Society of Chemistry, 2001) Dag, Ö.; Yaman, S. Ö.; Önal, A. M.; Isci, H.
    Electrochemical and chemical oxidation of S2COEt−, Ni(S2COEt)2, and [Ni(S2COEt)3]− have been studied by CVand in situ UV-VIS spectroscopy in acetonitrile. Cyclic voltammograms of S2COEt− and Ni(S2COEt)2 display one (0.00 V) and two (0.35 and 0.80 V) irreversible oxidation peaks, respectively, referenced to an Ag/Ag+ (0.10 M) electrode. However, the cyclic voltammogram of [Ni(S2COEt)3]− displays one reversible (−0.15 V) and two irreversible (0.35, 0.80 V) oxidation peaks, referenced to an Ag/Ag+ electrode. The low temperature EPR spectrum of the oxidatively electrolyzed solution of (NEt4)[Ni(S2COEt)3] indicates the presence of [NiIII(S2COEt)3], which disproportionates to Ni(S2COEt)2, and the dimer of the oxidized ethylxanthate ligand, (S2COEt)2 ((S2COEt)2 = C2H5OC(S)SS(S)COC2H5), with a second order rate law. The final products of constant potential electrolysis at the first oxidation peak potentials of S2COEt−, Ni(S2COEt)2, and [Ni(S2COEt)3]− are (S2COEt)2; Ni2+(sol) and (S2COEt)2; and Ni(S2COEt)2 and (S2COEt)2, respectively. The chemical oxidation of S2COEt− to (S2COEt)2, and [Ni(S2COEt)3]− to (S2COEt)2 and Ni(S2COEt)2 were also achieved with iodine. The oxidized ligand in the dimer form can be reduced to S2COEt− with CN− in solution.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback