BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Accurate analysis"

Filter results by typing the first few letters
Now showing 1 - 4 of 4
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Analysis of double-negative materials with surface integral equations and the multilevel fast multipole algorithm
    (IEEE, 2011) Ergül O.; Gürel, Levent
    We present a fast and accurate analysis of double-negative materials (DNMs) with surface integral equations and the multilevel fast multipole algorithm (MLFMA). DNMs are commonly used as simplified models of metamaterials at resonance frequencies and are suitable to be formulated with surface integral equations. However, realistic metamaterials and their models are usually very large with respect to wavelength and their accurate solutions require fast algorithms, such as MLFMA. We consider iterative solutions of DNMs with MLFMA and we investigate the accuracy and efficiency of solutions when DNMs are formulated with two recently developed formulations, namely, the combined tangential formulation (CTF) and the electric and magnetic current combined-field integral equation (JMCFIE). Numerical results on canonical objects are consistent with previous results in the literature on ordinary objects. © 2011 IEEE.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Efficient solutions of metamaterial problems using a low-frequency multilevel fast multipole algorithm
    (2010) Ergül, Özgür; Gürel, Levent
    We present fast and accurate solutions of electromagnetics problems involving realistic metamaterial structures using a lowfrequency multilevel fast multipole algorithm (LF-MLFMA). Accelerating iterative solutions using robust preconditioning techniques may not be sufficient to reduce the overall processing time when the ordinary high-frequency MLFMA is applied to metamaterial problems. The major bottleneck, i.e., the low-frequency breakdown, should be eliminated for efficient solutions. We show that the combination of an LF-MLFMA implementation based on the multipole expansion with the sparse-approximate-inverse preconditioner enables efficient and accurate analysis of realistic metamaterial structures. Using the robust LF-MLFMA implementation, we demonstrate how the transmission properties of metamaterial walls can be enhanced with randomlyoriented unit cells.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Fast and accurate analysis of complicated metamaterial structures using a low-frequency multilevel fast multipole algorithm
    (2009-09) Ergül, Özgür; Gürel, Levent
    We present efficient solutions of electromagnetics problems involving realistic metamaterial structures using a low-frequency multilevel fast multipole algorithm (LF-MLFMA). Ordinary implementations of MLFMA based on the diago-nalization of the Green's function suffer from the low-frequency breakdown, and they become inefficient for the solution of metamaterial problems dis-cretized with very small elements compared to the wavelength. We show that LF-MLFMA, which employs multipoles explicitly without diagonalization, significantly improves the solution of metamaterial problems in terms of both processing time and memory. © 2009 IEEE.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Fast and accurate analysis of large metamaterial structures using the multilevel fast multipole algorithm
    (2009) Gürel, Levent; Ergül, Özgür; Ünal, A.; Malas, T.
    We report fast and accurate simulations of metamaterial structures constructed with large numbers of unit cells containing split-ring resonators and thin wires. Scattering problems involving various metamaterial walls are formulated rigorously using the electric-field integral equation, discretized with the Rao-Wilton-Glisson basis functions. Resulting dense matrix equations are solved iteratively, where the matrix-vector multiplications are performed efficiently with the multilevel fast multipole algorithm. For rapid solutions at resonance frequencies, convergence of the iterations is accelerated by using robust preconditioning techniques, such as the sparse-approximate-inverse preconditioner. Without resorting to homogenization approximations and periodicity assumptions, we are able to obtain accurate solutions of realistic metamaterial problems discretized with millions of unknowns.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback