BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "Ab initio method"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Modeling photoelectron spectra of conjugated oligomers with time-dependent density functional theory
    (American Chemical Society, 2010) Salzner, U.
    With the aim of producing accurate band structures of conjugated systems by employing the states of cations, TDDFT calculations on conjugated oligomer radical cations of thiophene, furan, and pyrrole with one to eight rings were carried out. Benchmarking of density functional theory and ab initio methods on the thiophene monomer shows that the ΔSCF ionization potential (IP) is most accurate at the B3LYP/6-311G* level. Improvement of the basis set beyond 6-311G* leads to no further changes. The IP is closer to experiment at B3LYP/6-311G* than at CCSD(T)/CCPVQZ. For longer oligomers the ΔSCF IPs decrease too fast with increasing chain length with all density functionals. CCSD/6-311G* performs well if the geometries are optimized at the CCSD level. With MP2 geometries IPs decrease too fast. Peak positions in photoelectron spectra were determined by adding appropriate TDDFT excitation energies of radical cations to the ΔSCF IPs. The agreement with experiment and with Green function calculations shows that TDDFT excited states of radical cations at the B3LYP/6-311G* level are very accurate and that absorption energies can be employed to predict photoelectron spectra.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Tuning electronic properties of monolayer hexagonal boron phosphide with group III-IV-V dopants
    (American Chemical Society, 2017-02) Onat, B.; Hallioglu, L.; Ipek, S.; Durgun, Engin
    An extensive study on doping of two-dimensional (2D) hexagonal boron phosphide (h-BP) which is a direct band gap semiconductor was performed by using ab initio methods based on spin-polarized density functional theory. The interaction of group III-IV-V elements with h-BP is explored, considering both adsorption and substitution cases, and the resulting structural and electronic properties are examined. The variation of adsorption (substitution) energies and band gap values are systematically analyzed and trends are identified. Upon adsorption, the most of the elements bound on top of P atom forming dumbbell geometry which generates characteristic spin-polarized impurity states. The substitution of B or P by group III-IV-V elements can produce extra electrons/holes which lead to n-type and p-type doping for adequate cases. Additionally, doping can further generate impurity resonant states. Functionalization of h-BP with adatoms can tune the electronic structure and would be useful for nanoelectronic applications in low-dimensions.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback