BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Subject

Browsing by Subject "3-D integration"

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Atomic Layer Deposition for Vertically Integrated ZnO Thin Film Transistors: Toward 3D High Packing Density Thin Film Electronics
    (Wiley-VCH Verlag, 2017) Sisman, Z.; Bolat, S.; Okyay, Ali Kemal
    We report on the first demonstration of the atomic layer deposition (ALD) based three dimensional (3D) integrated ZnO thin film transistors (TFTs) on rigid substrates. Devices exhibit high on-off ratio (∼106) and high effective mobility (∼11.8 cm2 V−1 s−1). It has also been demonstrated that the steps of fabrication result in readily stable electrical characteristics in TFTs, eliminating the need for post-production steps. These results mark the potential of our fabrication method for the semiconducting metal oxide-based vertical-integrated circuits requiring high packing density and high functionality. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
  • Loading...
    Thumbnail Image
    ItemOpen Access
    OptMem: dark-silicon aware low latency hybrid memory design
    (IEEE, 2016-01) Onsori, Salman; Asad, Arghavan A; Raahemifar, K.; Fathy, M.
    In this article, we present a convex optimization model to design a three dimension (3D)stacked hybrid memory system to improve performance in the dark silicon era. Our convex model optimizes numbers and placement of static random access memory (SRAM) and spin-Transfer torque magnetic random-Access memory(STT-RAM) memories on the memory layer to exploit advantages of both technologies. Power consumption that is the main challenge in the dark silicon era is represented as a main constraint in this work and it is satisfied by the detailed optimization model in order to design a dark silicon aware 3D Chip-Multiprocessor (CMP). Experimental results show that the proposed architecture improves the energy consumption and performanceof the 3D CMPabout 25.8% and 12.9% on averagecompared to the Baseline memory design. © 2016 IEEE.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback