Browsing by Subject "2D mel-cepstrum"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Cepstral methods for image feature extraction(2010) Çakır, SerdarImage feature extraction is one of the most vital tasks in computer vision and pattern recognition applications due to its importance in the preparation of data extracted from images. In this thesis, 2D cepstrum based methods (2D mel- and Mellin-cepstrum) are proposed for image feature extraction. The proposed feature extraction schemes are used in face recognition and target detection applications. The cepstral features are invariant to amplitude and translation changes. In addition, the features extracted using 2D Mellin-cepstrum method are rotation invariant. Due to these merits, the proposed techniques can be used in various feature extraction problems. The feature matrices extracted using the cepstral methods are classified by Common Matrix Approach (CMA) and multi-class Support Vector Machine (SVM). Experimental results show that the success rates obtained using cepstral feature extraction algorithms are higher than the rates obtained using standard baselines (PCA, Fourier-Mellin Transform, Fourier LDA approach). Moreover, it is observed that the features extracted by cepstral methods are computationally more efficient than the standard baselines. In target detection task, the proposed feature extraction methods are used in the detection and discrimination stages of a typical Automatic Target Recognition (ATR) system. The feature matrices obtained from the cepstral techniques are applied to the SVM classifier. The simulation results show that 2D cepstral feature extraction techniques can be used in the target detection in SAR images.Item Open Access Mel-and Mellin-cepstral feature extraction algorithms for face recognition(Oxford University Press, 2011-01-17) Cakir, S.; Çetin, A. EnisIn this article, an image feature extraction method based on two-dimensional (2D) Mellin cepstrum is introduced. The concept of one-dimensional (1D) mel-cepstrum that is widely used in speech recognition is extended to two-dimensions using both the ordinary 2D Fourier transform and the Mellin transform. The resultant feature matrices are applied to two different classifiers such as common matrix approach and support vector machine to test the performance of the mel-cepstrum- and Mellin-cepstrum-based features. The AR face image database, ORL database, Yale database and FRGC database are used in experimental studies, which indicate that recognition rates obtained by the 2D mel-cepstrum-based method are superior to that obtained using 2D principal component analysis, 2D Fourier-Mellin transform and ordinary image matrix-based face recognition in both classifiers. Experimental results indicate that 2D cepstral analysis can also be used in other image feature extraction problems. © The Author 2010. Published by Oxford University Press on behalf of The British Computer Society.Item Open Access Mel-cepstral methods for image feature extraction(IEEE, 2010) Çakır, Serdar; Çetin, A. EnisA feature extraction method based on two-dimensional (2D) mel-cepstrum is introduced. The concept of one-dimensional (1D) mel-cepstrum which is widely used in speech recognition is extended to 2D in this article. Feature matrices resulting from the 2D mel-cepstrum, Fourier LDA, 2D PCA and original image matrices are converted to feature vectors and individually applied to a Support Vector Machine (SVM) classification engine for comparison. The AR face database, ORL database, Yale database and FRGC version 2 database are used in experimental studies, which indicate that recognition rates obtained by the 2D mel-cepstrum method is superior to the recognition rates obtained using Fourier LDA, 2D PCA and ordinary image matrix based face recognition. This indicates that 2D mel-cepstral analysis can be used in image feature extraction problems. © 2010 IEEE.