Browsing by Author "Yemliha, T."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Open Access Code scheduling for optimizing parallelism and data locality(Springer, 2010-08-09) Yemliha, T.; Kandemir, M.; Öztürk, Özcan; Kultursay, E.; Muralidhara, S. P.As chip multiprocessors proliferate, programming support for these devices is likely to receive a lot of attention in the near future. Parallelism and data locality are two critical issues in a chip multiprocessor environment. Unfortunately, most of the published work in the literature focuses only on one of these problems, and this can prevent one from achieving the best possible performance. The main goal of this paper is to propose and evaluate a compiler-directed code parallelization scheme, which considers both parallelism and data locality at the same time. Our compiler captures the inherent parallelism and data reuse in the application code being analyzed using a novel representation called the locality-parallelism graph (LPG). Our partitioning/scheduling algorithm assigns the nodes of this graph to the processors in the architecture and schedules them for execution. We implemented this algorithm and evaluated its effectiveness using a set of benchmark codes. The results collected so far indicate that our approach improves overall execution latency significantly. In this paper, we also introduce an ILP (Integer Linear Programming) based formulation of the problem, and implement the schedule obtained by the ILP solver. The results indicate that our approach gets within 4% of the ILP solution. © 2010 Springer-Verlag.Item Open Access SPM management using markov chain based data access prediction(IEEE, 2008-11) Yemliha, T.; Srikantaiah, S.; Kandemir, M.; Öztürk, ÖzcanLeveraging the power of scratchpad memories (SPMs) available in most embedded systems today is crucial to extract maximum performance from application programs. While regular accesses like scalar values and array expressions with affine subscript functions have been tractable for compiler analysis (to be prefetched into SPM), irregular accesses like pointer accesses and indexed array accesses have not been easily amenable for compiler analysis. This paper presents an SPM management technique using Markov chain based data access prediction for such irregular accesses. Our approach takes advantage of inherent, but hidden reuse in data accesses made by irregular references. We have implemented our proposed approach using an optimizing compiler. In this paper, we also present a thorough comparison of our different dynamic prediction schemes with other SPM management schemes. SPM management using our approaches produces 12.7% to 28.5% improvements in performance across a range of applications with both regular and irregular access patterns, with an average improvement of 20.8%.