Browsing by Author "Yazar, Volkan"
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Item Open Access 3D-MSCs A151 ODN-loaded exosomes are immunomodulatory and reveal a proteomic cargo that sustains wound resolution(Elsevier B.V., 2022-11) Camões, Sérgio P.; Bulut, Özlem; Yazar, Volkan; Gaspar, Maria M.; Simões, Sandra; Ferreira, Rita; Vitorino, Rui; Santos, Jorge M.; Gürsel, İhsan; Miranda, Joana P.Introduction: Non-healing wounds remain a major burden due to the lack of effective treatments. Mesenchymal stem cell-derived exosomes (MSC-Exo) have emerged as therapeutic options given their pro-regenerative and immunomodulatory features. Still, little is known on the exact mechanisms mediated by MSC-Exo. Importantly, modulation of their efficacy through 3D-physiologic cultures together with loading strategies continues underexplored. Objectives: To uncover the MSC-Exo-mediated mechanism via proteomic analyses, and to use 3D-culture and loading technologies to expand MSC-Exo efficacy for cutaneous wound healing. Methods: MSC-Exo were produced in either 3D or 2D cultures (Exo3D/Exo2D) and loaded with an exogenous immunosuppressive oligodeoxynucleotide (A151 ODN). Both, loaded and naïve exosomes were characterised regarding size, morphology and the presence of specific protein markers; while IPA analyses enabled to correlate their protein content with the effects observed in vitro and in vivo. The Exo3D/Exo2D regenerative potential was evaluated in vitro by assessing keratinocyte and fibroblast mitogenicity, motogenicity, and cytokine secretion as well as using an in vivo wound splinting model. Accordingly, the modulation of inflammatory and immune responses by A151-loaded Exo3D/Exo2D was also assessed. Results: Exo3D stimulated mitogenically and motogenically keratinocytes and fibroblasts in vitro, with upregulation of IL-1α and VEGF-α or increased secretion of TGF-β, TNF-α and IL-10. In vivo, Exo3D reduced the granulation tissue area and promoted complete re-epithelization of the wound. These observations were sustained by the proteomic profiling of the Exo3D cargo that identified wound healing-related proteins, such as TGF-β, ITGA1-3/5, IL-6, CDC151, S100A10 and Wnt5α. Moreover, when loaded with A151 ODN, Exo3D differentially mediated wound healing-related trophic factors reducing the systemic levels of IL-6 and TNF-α at the late stage of wound healing in vivo. Conclusion: Our results support the potential of A151-loaded Exo3D for the treatment of chronic wounds by promoting skin regeneration, while modulating the systemic levels of the pro-inflammatory cytokines. © 2022Item Open Access Circulating extracellular vesicles of patients with steroid-sensitive nephrotic syndrome have higher RAC1 and induce recapitulation of nephrotic syndrome phenotype in podocytes(American Physiological Society, 2021-11-09) Kara Eroğlu, Fehime; Yazar, Volkan; Guler, Ulku; Yıldırım, Muzaffer; Yıldırım, Tuğçe; Gungor, Tulin; Celikkaya, Evra; Karakaya, Deniz; Turay, Nilsu; Ciftci Dede, Eda; Korkusuz, Petek; Salih, Bekir; Bulbul, Mehmet; Gürsel, İhsanSince previous research suggests a role of a circulating factor in the pathogenesis of steroid-sensitive nephrotic syndrome (NS), we speculated that circulating plasma extracellular vesicles (EVs) are a candidate source of such a soluble mediator. Here, we aimed to characterize and try to delineate the effects of these EVs in vitro. Plasma EVs from 20 children with steroid-sensitive NS in relapse and remission, 10 healthy controls, and 6 disease controls were obtained by serial ultracentrifugation. Characterization of these EVs was performed by electron microscopy, flow cytometry, and Western blot analysis. Major proteins from plasma EVs were identified via mass spectrometry. Gene Ontology classification analysis and Ingenuity Pathway Analysis were performed on selectively expressed EV proteins during relapse. Immortalized human podocyte culture was used to detect the effects of EVs on podocytes. The protein content and particle number of plasma EVs were significantly increased during NS relapse. Relapse NS EVs selectively expressed proteins that involved actin cytoskeleton rearrangement. Among these, the level of RAC-GTP was significantly increased in relapse EVs compared with remission and disease control EVs. Relapse EVs were efficiently internalized by podocytes and induced significantly enhanced motility and albumin permeability. Moreover, relapse EVs induced significantly higher levels of RAC-GTP and phospho-p38 and decreased the levels of synaptopodin in podocytes. Circulating relapse EVs are biologically active molecules that carry active RAC1 as cargo and induce recapitulation of the NS phenotype in podocytes in vitro.Item Open Access Could individuals from countries using BCG vaccination be resistant to SARS-CoV-2 induced infections?(Turkish Society of Immunology, 2020) Ayanoğlu, İ. C.; İpekoğlu, E. M.; Yazar, Volkan; Yılmaz, İ. C.; Gürsel, İhsan; Gürsel, M.The lower than expected number of SARS-CoV-2 cases in countries with fragile health systems is puzzling. Herein, we hypothesize that BCG vaccination policies and vaccine strain preferences adopted by different countries might influence the SARS-CoV-2 transmission patterns and/or COVID-19 associated morbidity and mortality. We also postulate that until a specific vaccine is developed, SARS-CoV-2 vulnerable populations could be immunized with BCG vaccines to attain heterologous nonspecific protection from the new coronavirus. In the lights of our investigations the most resistant countries appear to be the ones using Group I BCG strain. Within these countries, however, those who employs Russian strain is even more protected against COVID-19 infection.Item Open Access Elucidating immunomodulatory effects of telomeric repeat mimicking synthetic A151 oligodeoxynucleotide on immune cell transcriptome(2019-09) Yazar, VolkanRecent evidence revealed that DNA is beyond just the blueprint of life; it is also involved in immunomodulation. Unmethylated Cytosine-phosphate-Guanine (CpG) motifs of prokaryotic DNA stimulate immune response by interacting with Toll-like receptor 9 (TLR9). This interaction is mimicked using synthetic oligodeoxynucleotides (ODN) bearing similar DNA motifs to boost vaccinedriven immune response in human. Conversely, mammalian telomeric ends expressing TTAGGG repeats suppress immune response and contribute to fine-tuning of delicate immune balance. In this respect, suppressive ODN A151 with such G-rich telomeric repeats has proven useful in downregulating immune response; an overly active immune response is just as harmful to the host, as in the case of autoimmune disorders. Both CpG ODN and A151 are currently under preclinical/clinical trials with the aim of averting or medically treating a wide range of conditions from cancer to infectious disease or from autoimmune to autoinflammatory conditions. Contrary to CpG ODN, A151 literature is very limited and its modus operandi at gene level remains more of a mystery. Additionally, the degree, duration and breath of A151-induced alterations in immune transcriptome appear partially understood. Given the medical potential A151 holds for immunosuppressive therapy in human as a “self-molecule”, understanding the underlying molecular mechanisms via which A151 operates is invaluable. Toward this end, we attempted to uncover the unidentified features lying behind A151 ODNs immunosuppressive effects on immune cell transcriptome using a combined analysis approach of microarray data in this thesis. We demonstrated for the first time that A151 ODN deprives the cells energy by ceasing cellular uptake of fundamental molecules into the immune cells after derailing the entire intracellular trafficking. Putting it another way, A151 does not directly act on immune system cells but actually suffocates the cells by messing with intracellular trafficking, thereby blocking cellular uptake of fundamental molecules like glucose and glutamine. As such, immune suppression is just an indirect consequence of this larger cellular chaos. Our results indicated that this phenomenon occurs independent of CpG ODN stimulation of the cells and in a timely manner. Most, if not all, regulators of intracellular trafficking, vesicle signaling, and membrane protein transportation were found downregulated after incubation of cells with A151 at a physiologically relevant concentration, as well, implying full-blown entry to this intracellular turmoil at cellular level. The A151 effect on immune transcriptome was not just restricted to setting off a chaos for intracellular dynamics; novel long non-coding RNAs (lncRNAs) with immunometabolic activities were identified within the scope of this study among elements potentially regulated by A151, such as Lncpint, Malat1 and H2-T10 just to name a few. The involvement of lncRNAs in immune regulation is a well-documented phenomenon. Finally, our data showed that as an epiphenomenon of the intracellular turmoil mentioned above A151 has a deep impact in immune cells on mTOR network, the cardinal network of cellular energetics, growth, proliferation, and survival. A major shift in expression profile of relevant genes, i.e. downregulation of many activators of mTOR signaling along with core mTOR components, was validated on the benchtop after different layers of experimental validation using a wide range of marker genes and functional assays, reflecting A151’s ability to vastly shape dynamics of metabolism in favor of a metabolically inert state in macrophages and in B-cells. This knowledge will expand the breadth of A151 therapy in the clinics.Item Open Access Gene network landscape of mouse splenocytes reveals integrin complex as the A151 ODN-responsive hub molecule in the immune transcriptome(Cell Press, 2023-02-01) Yazar, Volkan; Yılmaz, İsmail Cem; Bülbül, Artun; Klinman, D. M.; Gürsel, İhsanHomeostatic restoration of an inflammatory response requires quenching of the immune system after pathogen threats vanish. A continued assault orchestrated by host defense results in tissue destruction or autoimmunity. A151 is the epitome of synthetic oligodeoxynucleotides (ODNs) that curb the immune response by a subset of white corpuscles through repetitive telomere-derived TTAGGG sequences. Currently, the genuine effect of A151 on the immune cell transcriptome remains unknown. Here, we leveraged an integrative approach where weighted gene co-expression network analysis (WGCNA), differential gene expression analysis, and gene set enrichment analysis (GSEA) of our in-house microarray datasets aided our understanding of how A151 ODN suppresses the immune response in mouse splenocytes. Our bioinformatics results, together with experimental validations, indicated that A151 ODN acts on components of integrin complexes, Itgam and Itga6, to interfere with immune cell adhesion and thereby suppresses the immune response in mice. Moreover, independent lines of evidence in this work converged on the observation that cell adhesion by integrin complexes serves as a focal point for cellular response to A151 ODN treatment in immune cells. Taken together, the outcome of this study sheds light on the molecular basis of immune suppression by a clinically useful DNA-based therapeutic agent.Item Open Access Human gut commensal membrane vesicles modulate inflammation by generating m2-like macrophages and myeloid-derived suppressor cells(American Association of Immunologists, 2020) Bulut, E. A.; Kocabaş, Banu Bayyurt; Yazar, Volkan; Aykut, Gamze; Güler, Ülkü; Salih, B.; Yılmaz, N. S.; Ayanoglu, I. C.; Polat, M. M.; Akçalı, K. Ç.; Gürsel, İhsan; Gürsel, M.Immunomodulatory commensal bacteria modify host immunity through delivery of regulatory microbial-derived products to host cells. Extracellular membrane vesicles (MVs) secreted from symbiont commensals represent one such transport mechanism. How MVs exert their anti-inflammatory effects or whether their tolerance-inducing potential can be used for therapeutic purposes remains poorly defined. In this study, we show that MVs isolated from the human lactic acid commensal bacteria Pediococcus pentosaceus suppressed Ag-specific humoral and cellular responses. MV treatment of bone marrow-derived macrophages and bone marrow progenitors promoted M2-like macrophage polarization and myeloid-derived suppressor cell differentiation, respectively, most likely in a TLR2-dependent manner. Consistent with their immunomodulatory activity, MV-differentiated cells upregulated expression of IL-10, arginase-1, and PD-L1 and suppressed the proliferation of activated T cells. MVs- antiinflammatory effects were further tested in acute inflammation models in mice. In carbon tetrachloride-induced fibrosis and zymosan-induced peritonitis models, MVs ameliorated inflammation. In the dextran sodium sulfate-induced acute colitis model, systemic treatment with MVs prevented colon shortening and loss of crypt architecture. In an excisional wound healing model, i.p. MV administration accelerated wound closure through recruitment of PD-L1-expressing myeloid cells to the wound site. Collectively, these results indicate that P. pentosaceus-derived MVs hold promise as therapeutic agents in management/treatment of inflammatory conditions.Item Open Access A suppressive oligodeoxynucleotide expressing TTAGGG motifs modulates cellular energetics through the mTOR signaling pathway(Oxford University Press, 2020) Yazar, Volkan; Kılıç, Gizem; Bulut, Özlem; Canavar-Yıldırım, Tuğçe; Yağcı, Fuat C.; Gamze, Aykut; Klinman, D. M.; Gürsel, M.; Gürsel, İhsanImmune-mediated inflammation must be down-regulated to facilitate tissue remodeling during homeostatic restoration of an inflammatory response. Uncontrolled or over-exuberant immune activation can cause autoimmune diseases, as well as tissue destruction. A151, the archetypal example of a chemically synthesized suppressive oligodeoxynucleotide (ODN) based on repetitive telomere-derived TTAGGG sequences, was shown to successfully down-regulate a variety of immune responses. However, the degree, duration and breadth of A151-induced transcriptome alterations remain elusive. Here, we performed a comprehensive microarray analysis in combination with Ingenuity Pathway Analysis (IPA) using murine splenocytes to investigate the underlying mechanism of A151-dependent immune suppression. Our results revealed that A151 significantly down-regulates critical mammalian target of rapamycin (mTOR) activators (Pi3kcd, Pdpk1 and Rheb), elements downstream of mTOR signaling (Rps6ka1, Myc, Stat3 and Slc2a1), an important component of the mTORC2 protein complex (Rictor) and Mtor itself. The effects of A151 on mTOR signaling were doseand time-dependent. Moreover, flow cytometry and immunoblotting analyses demonstrated that A151 is able to reverse mTOR phosphorylation comparably to the well-known mTOR inhibitor rapamycin. Furthermore, Seahorse metabolic assays showed an A151 ODN-induced decrease in both oxygen consumption and glycolysis implying that a metabolically inert state in macrophages could be triggered by A151 treatment. Overall, our findings suggested novel insights into the mechanism by which the immune system is metabolically modulated by A151 ODN.