Browsing by Author "Van Der Schaar, M."
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Open Access Adaptive ensemble learning with confidence bounds for personalized diagnosis(AAAI Press, 2016) Tekin, Cem; Yoon, J.; Van Der Schaar, M.With the advances in the field of medical informatics, automated clinical decision support systems are becoming the de facto standard in personalized diagnosis. In order to establish high accuracy and confidence in personalized diagnosis, massive amounts of distributed, heterogeneous, correlated and high-dimensional patient data from different sources such as wearable sensors, mobile applications, Electronic Health Record (EHR) databases etc. need to be processed. This requires learning both locally and globally due to privacy constraints and/or distributed nature of the multimodal medical data. In the last decade, a large number of meta-learning techniques have been proposed in which local learners make online predictions based on their locally-collected data instances, and feed these predictions to an ensemble learner, which fuses them and issues a global prediction. However, most of these works do not provide performance guarantees or, when they do, these guarantees are asymptotic. None of these existing works provide confidence estimates about the issued predictions or rate of learning guarantees for the ensemble learner. In this paper, we provide a systematic ensemble learning method called Hedged Bandits, which comes with both long run (asymptotic) and short run (rate of learning) performance guarantees. Moreover, we show that our proposed method outperforms all existing ensemble learning techniques, even in the presence of concept drift.Item Open Access Big-data streaming applications scheduling based on staged multi-armed bandits(Institute of Electrical and Electronics Engineers, 2016) Kanoun, K.; Tekin, C.; Atienza, D.; Van Der Schaar, M.Several techniques have been recently proposed to adapt Big-Data streaming applications to existing many core platforms. Among these techniques, online reinforcement learning methods have been proposed that learn how to adapt at run-time the throughput and resources allocated to the various streaming tasks depending on dynamically changing data stream characteristics and the desired applications performance (e.g., accuracy). However, most of state-of-the-art techniques consider only one single stream input in its application model input and assume that the system knows the amount of resources to allocate to each task to achieve a desired performance. To address these limitations, in this paper we propose a new systematic and efficient methodology and associated algorithms for online learning and energy-efficient scheduling of Big-Data streaming applications with multiple streams on many core systems with resource constraints. We formalize the problem of multi-stream scheduling as a staged decision problem in which the performance obtained for various resource allocations is unknown. The proposed scheduling methodology uses a novel class of online adaptive learning techniques which we refer to as staged multi-armed bandits (S-MAB). Our scheduler is able to learn online which processing method to assign to each stream and how to allocate its resources over time in order to maximize the performance on the fly, at run-time, without having access to any offline information. The proposed scheduler, applied on a face detection streaming application and without using any offline information, is able to achieve similar performance compared to an optimal semi-online solution that has full knowledge of the input stream where the differences in throughput, observed quality, resource usage and energy efficiency are less than 1, 0.3, 0.2 and 4 percent respectively.Item Open Access Conservative policy construction using variational autoencoders for logged data with missing values(Institute of Electrical and Electronics Engineers Inc., 2022-01-10) Abroshan, M.; Yip, K. H.; Tekin, Cem; Van Der Schaar, M.In high-stakes applications of data-driven decision-making such as healthcare, it is of paramount importance to learn a policy that maximizes the reward while avoiding potentially dangerous actions when there is uncertainty. There are two main challenges usually associated with this problem. First, learning through online exploration is not possible due to the critical nature of such applications. Therefore, we need to resort to observational datasets with no counterfactuals. Second, such datasets are usually imperfect, additionally cursed with missing values in the attributes of features. In this article, we consider the problem of constructing personalized policies using logged data when there are missing values in the attributes of features in both training and test data. The goal is to recommend an action (treatment) when ~X, a degraded version of Xwith missing values, is observed. We consider three strategies for dealing with missingness. In particular, we introduce the conservative strategy where the policy is designed to safely handle the uncertainty due to missingness. In order to implement this strategy, we need to estimate posterior distribution p(X|~X) and use a variational autoencoder to achieve this. In particular, our method is based on partial variational autoencoders (PVAEs) that are designed to capture the underlying structure of features with missing values.Item Open Access Feedback adaptive learning for medical and educational application recommendation(IEEE, 2020) Tekin, Cem; Elahi, Sepehr; Van Der Schaar, M.Recommending applications (apps) to improve health or educational outcomes requires long-term planning and adaptation based on the user feedback, as it is imperative to recommend the right app at the right time to improve engagement and benefit. We model the challenging task of app recommendation for these specific categories of apps-or alike-using a new reinforcement learning method referred to as episodic multi-armed bandit (eMAB). In eMAB, the learner recommends apps to individual users and observes their interactions with the recommendations on a weekly basis. It then uses this data to maximize the total payoff of all users by learning to recommend specific apps. Since computing the optimal recommendation sequence is intractable, as a benchmark, we define an oracle that sequentially recommends apps to maximize the expected immediate gain. Then, we propose our online learning algorithm, named FeedBack Adaptive Learning (FeedBAL), and prove that its regret with respect to the benchmark increases logarithmically in expectation. We demonstrate the effectiveness of FeedBAL on recommending mental health apps based on data from an app suite and show that it results in a substantial increase in the number of app sessions compared with episodic versions of ϵn -greedy, Thompson sampling, and collaborative filtering methods.Item Open Access Jamming bandits-a novel learning method for optimal jamming(Institute of Electrical and Electronics Engineers Inc., 2016) Amuru, S.; Tekin, C.; Van Der Schaar, M.; Buehrer, R.M.Can an intelligent jammer learn and adapt to unknown environments in an electronic warfare-type scenario? In this paper, we answer this question in the positive, by developing a cognitive jammer that adaptively and optimally disrupts the communication between a victim transmitter-receiver pair. We formalize the problem using a multiarmed bandit framework where the jammer can choose various physical layer parameters such as the signaling scheme, power level and the on-off/pulsing duration in an attempt to obtain power efficient jamming strategies. We first present online learning algorithms to maximize the jamming efficacy against static transmitter-receiver pairs and prove that these algorithms converge to the optimal (in terms of the error rate inflicted at the victim and the energy used) jamming strategy. Even more importantly, we prove that the rate of convergence to the optimal jamming strategy is sublinear, i.e., the learning is fast in comparison to existing reinforcement learning algorithms, which is particularly important in dynamically changing wireless environments. Also, we characterize the performance of the proposed bandit-based learning algorithm against multiple static and adaptive transmitter-receiver pairs.Item Open Access A non-atochastic learning approach to energy efficient mobility management(Institute of Electrical and Electronics Engineers Inc., 2016) Shen, C.; Tekin, C.; Van Der Schaar, M.Energy efficient mobility management is an important problem in modern wireless networks with heterogeneous cell sizes and increased nodes densities. We show that optimization-based mobility protocols cannot achieve long-Term optimal energy consumption, particularly for ultra-dense networks (UDNs). To address the complex dynamics of UDN, we propose a non-stochastic online-learning approach, which does not make any assumption on the statistical behavior of the small base station (SBS) activities. In addition, we introduce handover cost to the overall energy consumption, which forces the resulting solution to explicitly minimize frequent handovers. The proposed batched randomization with exponential weighting (BREW) algorithm relies on batching to explore in bulk, and hence reduces unnecessary handovers. We prove that the regret of BREW is sublinear in time, thus guaranteeing its convergence to the optimal SBS selection. We further study the robustness of the BREW algorithm to delayed or missing feedback. Moreover, we study the setting where SBSs can be dynamically turned ON and OFF. We prove that sublinear regret is impossible with respect to arbitrary SBS ON/OFF, and then develop a novel learning strategy, called ranking expert (RE), that simultaneously takes into account the handover cost and the availability of SBS. To address the high complexity of RE, we propose a contextual ranking expert (CRE) algorithm that only assigns experts in a given context. Rigorous regret bounds are proved for both RE and CRE with respect to the best expert. Simulations show that not only do the proposed mobility algorithms greatly reduce the system energy consumption, but they are also robust to various dynamics which are common in practical ultra-dense wireless networks.