Browsing by Author "Tunc, S."
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access A Deterministic Analysis of an Online Convex Mixture of Expert Algorithms(IEEE, 2014-07) Ozkan, H.; Donmez, M. A.; Tunc, S.; Kozat, S. S.We analyze an online learning algorithm that adaptively combines outputs of two constituent algorithms (or the experts) running in parallel to model an unknown desired signal. This online learning algorithm is shown to achieve (and in some cases outperform) the mean-square error (MSE) performance of the best constituent algorithm in the mixture in the steady-state. However, the MSE analysis of this algorithm in the literature uses approximations and relies on statistical models on the underlying signals and systems. Hence, such an analysis may not be useful or valid for signals generated by various real life systems that show high degrees of nonstationarity, limit cycles and, in many cases, that are even chaotic. In this paper, we produce results in an individual sequence manner. In particular, we relate the time-accumulated squared estimation error of this online algorithm at any time over any interval to the time-accumulated squared estimation error of the optimal convex mixture of the constituent algorithms directly tuned to the underlying signal in a deterministic sense without any statistical assumptions. In this sense, our analysis provides the transient, steady-state and tracking behavior of this algorithm in a strong sense without any approximations in the derivations or statistical assumptions on the underlying signals such that our results are guaranteed to hold. We illustrate the introduced results through examples. © 2012 IEEE.Item Open Access Growth optimal investment in discrete-time markets with proportional transaction costs(Elsevier Inc., 2016) Vanli, N. D.; Tunc, S.; Donmez, M. A.; Kozat, S. S.We investigate how and when to diversify capital over assets, i.e., the portfolio selection problem, from a signal processing perspective. To this end, we first construct portfolios that achieve the optimal expected growth in i.i.d. discrete-time two-asset markets under proportional transaction costs. We then extend our analysis to cover markets having more than two stocks. The market is modeled by a sequence of price relative vectors with arbitrary discrete distributions, which can also be used to approximate a wide class of continuous distributions. To achieve the optimal growth, we use threshold portfolios, where we introduce a recursive update to calculate the expected wealth. We then demonstrate that under the threshold rebalancing framework, the achievable set of portfolios elegantly form an irreducible Markov chain under mild technical conditions. We evaluate the corresponding stationary distribution of this Markov chain, which provides a natural and efficient method to calculate the cumulative expected wealth. Subsequently, the corresponding parameters are optimized yielding the growth optimal portfolio under proportional transaction costs in i.i.d. discrete-time two-asset markets. As a widely known financial problem, we also solve the optimal portfolio selection problem in discrete-time markets constructed by sampling continuous-time Brownian markets. For the case that the underlying discrete distributions of the price relative vectors are unknown, we provide a maximum likelihood estimator that is also incorporated in the optimization framework in our simulations.Item Open Access Growth optimal investment with threshold rebalancing portfolios under transaction costs(IEEE, 2013) Tunc, S.; Donmez, M.A.; Kozat, Süleyman S.We study how to invest optimally in a stock market having a finite number of assets from a signal processing perspective. In particular, we introduce a portfolio selection algorithm that maximizes the expected cumulative wealth in i.i.d. two-asset discrete-time markets where the market levies proportional transaction costs in buying and selling stocks. This is achieved by using 'threshold rebalanced portfolios', where trading occurs only if the portfolio breaches certain thresholds. Under the assumption that the relative price sequences have log-normal distribution from the Black-Scholes model, we evaluate the expected wealth under proportional transaction costs and find the threshold rebalanced portfolio that achieves the maximal expected cumulative wealth over any investment period. © 2013 IEEE.Item Open Access Optimal investment under transaction costs: A threshold rebalanced portfolio approach(IEEE, 2013) Tunc, S.; Donmez, M. A.; Kozat, S. S.We study how to invest optimally in a financial market having a finite number of assets from a signal processing perspective. Specifically, we investigate how an investor should distribute capital over these assets and when he/she should reallocate the distribution of the funds over these assets to maximize the expected cumulative wealth over any investment period. In particular, we introduce a portfolio selection algorithm that maximizes the expected cumulative wealth in i.i.d. two-asset discrete-time markets where the market levies proportional transaction costs in buying and selling stocks. We achieve this using 'threshold rebalanced portfolios', where trading occurs only if the portfolio breaches certain thresholds. Under the assumption that the relative price sequences have log-normal distribution from the Black-Scholes model, we evaluate the expected wealth under proportional transaction costs and find the threshold rebalanced portfolio that achieves the maximal expected cumulative wealth over any investment period. Our derivations can be readily extended to markets having more than two stocks, where these extensions are provided in the paper. As predicted from our derivations, we significantly improve the achieved wealth with respect to the portfolio selection algorithms from the literature on historical data sets under both mild and heavy transaction costs.