Optimal investment under transaction costs: A threshold rebalanced portfolio approach

Date

2013

Authors

Tunc, S.
Donmez, M. A.
Kozat, S. S.

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
4
views
27
downloads

Citation Stats

Series

Abstract

We study how to invest optimally in a financial market having a finite number of assets from a signal processing perspective. Specifically, we investigate how an investor should distribute capital over these assets and when he/she should reallocate the distribution of the funds over these assets to maximize the expected cumulative wealth over any investment period. In particular, we introduce a portfolio selection algorithm that maximizes the expected cumulative wealth in i.i.d. two-asset discrete-time markets where the market levies proportional transaction costs in buying and selling stocks. We achieve this using 'threshold rebalanced portfolios', where trading occurs only if the portfolio breaches certain thresholds. Under the assumption that the relative price sequences have log-normal distribution from the Black-Scholes model, we evaluate the expected wealth under proportional transaction costs and find the threshold rebalanced portfolio that achieves the maximal expected cumulative wealth over any investment period. Our derivations can be readily extended to markets having more than two stocks, where these extensions are provided in the paper. As predicted from our derivations, we significantly improve the achieved wealth with respect to the portfolio selection algorithms from the literature on historical data sets under both mild and heavy transaction costs.

Source Title

IEEE Transactions on Signal Processing

Publisher

IEEE

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English