Browsing by Author "Tunc, I."
Now showing 1 - 8 of 8
- Results Per Page
- Sort Options
Item Open Access Charge storage and release onto Au and Ag nanoparticles in aqueous medium as probed by optical spectroscopy(Cognizure, 2014) Tunc, I.; Sezen, H.; Guvenc, H. O.; Süzer, ŞefikGold and silver nanoparticles in aqueous solutions can store negative or positive charges when, respectively, NaBH4, KI are introduced into the same media. The charge storage can be followed by the spectral shifts in the corresponding surface plasmon resonance (SPR) bands of these nanoparticles. In a similar way, the kinetics of these two processes can be monitored by the same shifts. Accordingly, we show that although Au nanoparticles exhibit smaller spectral shifts upon both negative and positive charge storage, when compared with Ag nanoparticles, their kinetics are faster towards reduction (electron storage) and comparable towards oxidation. Hence, if not the spectral shifts, the kinetics of the electron storage process can be correlated to the larger electron affinity of Au nanoparticles, when compared with those of Ag. The similarity of the kinetics towards oxidation must also be related to the small difference between the ionization potentials of Au and Ag nanoparticles.Item Open Access Charging/discharging of Au (core)/silica (shell) nanoparticles as revealed by XPS(American Chemical Society, 2005) Tunc, I.; Demirok, U. K.; Süzer, Şefik; Correa-Duatre, M. A.; Liz-Marzan, L. M.By recording XPS spectra while applying external voltage stress to the sample rod, we can control the extent of charging developed on core-shell-type gold nanoparticles deposited on a copper substrate, in both steady-state and time-resolved fashions. The charging manifests itself as a shift in the measured binding energy of the corresponding XPS peak. Whereas the bare gold nanoparticles exhibit no measurable binding energy shift in the Au 4f peaks, both the Au 4f and the Si 2p peaks exhibit significant and highly correlated (in time and magnitude) shifts in the case of gold (core)/silica (shell) nanoparticles. Using the shift in the Au 4f peaks, the capacitance of the 15-nm gold (core)/6-nm silica (shell) nanoparticle/nanocapacitor is estimated as 60 aF. It is further estimated that, in the fully charged situation, only 1 in 1000 silicon dioxide units in the shell carries a positive charge during our XPS analysis. Our simple method of controlling the charging, by application of an external voltage stress during XPS analysis, enables us to detect, locate, and quantify the charges developed on surface structures in a completely noncontact fashion. © 2005 American Chemical Society.Item Open Access Label-free nanometer-resolution imaging of biological architectures through surface enhanced raman scattering(Nature Publishing Group, 2013) Ayas, Sencer; Çınar, Göksu; Özkan, Alper Devrim; Soran, Zeliha; Ekiz, Oner; Kocaay, Deniz; Tomak, A.; Toren, Pelin; Kaya, Yasin; Tunc, I.; Zareie, H.; Tekinay, T.; Tekinay, Ayse Begum; Güler, Mustafa O.; Dana, AykutluLabel free imaging of the chemical environment of biological specimens would readily bridge the supramolecular and the cellular scales, if a chemical fingerprint technique such as Raman scattering can be coupled with super resolution imaging. We demonstrate the possibility of label-free super-resolution Raman imaging, by applying stochastic reconstruction to temporal fluctuations of the surface enhanced Raman scattering (SERS) signal which originate from biomolecular layers on large-area plasmonic surfaces with a high and uniform hot-spot density (> 10(11)/cm(2), 20 to 35 nm spacing). A resolution of 20 nm is demonstrated in reconstructed images of self-assembled peptide network and fibrilated lamellipodia of cardiomyocytes. Blink rate density is observed to be proportional to the excitation intensity and at high excitation densities (> 10 kW/cm(2)) blinking is accompanied by molecular breakdown. However, at low powers, simultaneous Raman measurements show that SERS can provide sufficient blink rates required for image reconstruction without completely damaging the chemical structure.Item Open Access Optical response of Ag-Au bimetallic nanoparticles to electron storage in aqueous medium(2008) Tunc, I.; Guvenc, H. O.; Sezen, H.; Süzer, Şefik; Correa-Duarte, M. A.; Liz-Marzán, L. M.Composition and structure dependence of the shift in the position of the surface plasmon resonance band upon introduction of NaBH 4 to aqueous solutions of gold and silver nanoparticles are presented. Silver and gold nanoalloys in different compositions were prepared by co-reduction of the corresponding salt mixtures using sodium citrate as the reducing agent. After addition of NaBH 4 to the resultant nanoalloys, the maximum of their surface plasmon resonance band, ranging between that of pure silver (ca. 400 nm) and of pure gold (ca. 530 nm), is blue-shifted as a result of electron storage on the particles. The extent of this blue shift increases non-linearly with the mole fraction of silver in the nanoparticle, parallel to the trends reported previously for both the frequency and the extinction coefficient of the plasmon band shifts. Gold(core)@silver(shell) nanoparticles were prepared by sequential reduction of gold and silver, where addition of NaBH 4 results in relatively large spectral shift in the plasmon resonance band when compared with the nanoalloys having a similar overall composition. The origin of the large plasmon band shift in the core-shell is related with a higher silver surface concentration on these particles. Hence, the chemical nature of the nanoparticle emerges as the dominating factor contributing to the extent of the spectral shift as a result of electron storage in bimetallic systems. Copyright © 2008 American Scientific Publishers All rights reserved.Item Open Access Preparation of Au and Au-Pt nanoparticles within PMMA matrix using UV and X-ray irradiation(2009) Ozkaraoglu, E.; Tunc, I.; Süzer, ŞefikAu and Au-Pt alloy nanoparticles are prepared and patterned at room temperature within the PMMA polymer matrix by the action of 254 nm UV light or X-rays. The polymer matrix enables us to entangle the kinetics of the photochemical reduction from the nucleation and growth processes, when monitored by UV-vis spectroscopy. Accordingly, increase of the temperature to 50 °C of the reaction medium increases the nucleation and growth rates of the nanoparticle formation by more than one order of magnitude, due to enhanced diffusion and nucleation at the higher temperature, but has no effect on the photochemical reduction process. Presence of Pt ions also increases the same rate, but by a factor two only. Similar photochemical reduction and particle growth take also place within the PMMA matrix, when these metal ions are subjected to prolonged exposure to X-rays, as evidenced by XPS analysis. Both angle-resolved and charge-contrast measurements using XPS reveal that the resultant Au and Pt species are in close proximity to each other, indicating the Au-Pt alloy formation to be the most likely case.Item Open Access Surface enhanced Raman spectroscopy of unilamellar liposomes loaded with silver nanoparticles(American Scientific Publishers, 2017) Toren, P.; Tekinay, T.; Ayas S.; Dana, A.; Tunc, I.Imaging organic molecules using surface-enhanced Raman spectroscopy (SERS) has drawn attention due to its non-invasive nature and label-free approach. The SERS approach can be used in tracking organic molecules and monitoring unique Raman spectra of the organic molecules bound to metal nanoparticles (NPs). We prepared unilamellar liposomes composed of 1,2-dipalmitoylsn-glycero-3-phosphocholine (DPPC) molecules with a diameter of around 100 nm. Electrostatic binding of silver (Ag) NPs on the surface of the unilamellar liposomes was achieved by the reduction of silver nitrate (AgNO3) which produces SERS active silver colloidal particles on the unilamellar liposome surfaces. Highly enhanced electromagnetic fields localized around neighbouring Ag NPs provide hot-spot construction around the liposomes, due to the spatial distribution of SERS enhancement in the unilamellar liposomes. It was observed that the signals fluctuate on a second time scale, presumably due to conformational change of DPPC chain and local Brownian motion of liposomal spheres.Item Open Access X-ray induced reduction of Au and Pt ions on silicon substrates(2007) Ozkaraoglu, E.; Tunc, I.; Süzer, ŞefikProlonged exposure to X-rays of HAuCl4, PtCl4 and their mixtures, deposited from an aqueous solution onto a silicon substrate, causes chemical reduction of the metal ions to their metallic states. The corresponding oxidation reaction is the conversion of chloride ions to chlorine. The resultant metal atoms aggregate to form metallic/bimetallic nanoclusters as evidenced from their XPS chemical shifts. Hence, X-rays are usable for in-situ nanoparticle production or for direct-writing applications on silicon substrates. © 2007 Elsevier B.V. All rights reserved.Item Open Access XPS characterization of Au (core)/SiO2 (shell) nanoparticles(American Chemical Society, 2005) Tunc, I.; Süzer, Şefik; Correa-Duarte, M. A.; Liz-Marzán, L. M.Core-shell nanoparticles with ca. 15-nm gold core and 6-nm silica shell were prepared and characterized by XPS. The Au/Si atomic ratio determined by XPS is independent of the electron takeoff angle because of the concentric spherical shape of the nanoparticles. The formula given by Wertheim and DiCenzo (Phys. Rev. B 1988, 37, 844) for spherical nanoparticles and the modified one by Yang et al. (J. Appl. Phys. 2005, 97, 024303) for core-shell nanoparticles are used to correlate the XPS-derived composition with the geometry of the nanoparticles only after significantly modifying either the bulk density of the silica shell or the attenuation length of the photoelectrons. © 2005 American Chemical Society.