Browsing by Author "Sun X. W."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Colloidal quantum dot light-emitting diodes employing phosphorescent small organic molecules as efficient exciton harvesters(American Chemical Society, 2014) Mutlugun, E.; Guzelturk, B.; Abiyasa, A. P.; Gao, Y.; Sun X. W.; Demir, Hilmi VolkanNonradiative energy transfer (NRET) is an alternative excitation mechanism in colloidal quantum dot (QD) based electroluminescent devices (QLEDs). Here, we develop hybrid highly spectrally pure QLEDs that facilitate energy transfer pumping via NRET from a phosphorescent small organic molecule-codoped charge transport layer to the adjacent QDs. A partially codoped exciton funnelling electron transport layer is proposed and optimized for enhanced QLED performance while exhibiting very high color purity of 99%. These energy transfer pumped hybrid QLEDs demonstrate a 6-fold enhancement factor in the external quantum efficiency over the conventional QLED structure, in which energy transfer pumping is intrinsically weak.Item Open Access Electroluminescence efficiency enhancement in quantum dot light-emitting diodes by embedding a silver nanoisland layer(Wiley-VCH Verlag, 2015) Yang, X.; Hernandez-Martinez, P. L.; Dang C.; Mutlugün, E.; Zhang, K.; Demir, Hilmi Volkan; Sun X. W.A colloidal quantum dot light-emitting diode (QLED) is reported with substantially enhanced electroluminescence by embedding a thin layer of Ag nanoislands into hole transport layer. The maximum external quantum efficiency (EQE) of 7.1% achieved in the present work is the highest efficiency value reported for green-emitting QLEDs with a similar structure, which corresponds to 46% enhancement compared with the reference device. The relevant mechanisms enabling the EQE enhancement are associated with the near-field enhancement via an effective coupling between excitons of the quantum dot emitters and localized surface plasmons around Ag nano-islands, which are found to lead to good agreement between the simulation results and the experimental data, providing us with a useful insight important for plasmonic QLEDs. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.Item Open Access Enhanced hole transport in InGaN/GaN multiple quantum well light-emitting diodes with a p-type doped quantum barrier(Optical Society of America, 2013) Ji Y.; Zhang, Z. -H.; Tan S.T.; Ju, Z. G.; Kyaw, Z.; Hasanov N.; Liu W.; Sun X. W.; Demir, Hilmi VolkanWe study hole transport behavior of InGaN/GaN light-emitting diodes with the dual wavelength emission method. It is found that at low injection levels, light emission is mainly from quantum wells near p-GaN, indicating that hole transport depth is limited in the active region. Emission from deeper wells only occurs under high current injection. However, with Mg-doped quantum barriers, holes penetrate deeper within the active region even under low injection, increasing the radiative recombination. Moreover, the improved hole transport leads to reduced forward voltage and enhanced light generation. This is also verified by numerical analysis of hole distribution and energy band structure. © 2013 Optical Society of America.