Browsing by Author "Saltepe, Behide"
Now showing 1 - 7 of 7
- Results Per Page
- Sort Options
Item Open Access Cellular biosensors with engineered genetic circuits(American Chemical Society, 2018) Saltepe, Behide; Kehribar, Ebru Şahin; Yirmibeşoǧlu, Side Selin Su; Şeker, Urartu Özgür ŞafakAn increasing interest in building novel biological devices with designed cellular functionalities has triggered the search of innovative tools for biocomputation. Utilizing the tools of synthetic biology, numerous genetic circuits have been implemented such as engineered logic operation in analog and digital circuits. Whole cell biosensors are widely used biological devices that employ several biocomputation tools to program cells for desired functions. Up to the present date, a wide range of whole-cell biosensors have been designed and implemented for disease theranostics, biomedical applications, and environmental monitoring. In this review, we investigated the recent developments in biocomputation tools such as analog, digital, and mix circuits, logic gates, switches, and state machines. Additionally, we stated the novel applications of biological devices with computing functionalities for diagnosis and therapy of various diseases such as infections, cancer, or metabolic diseases, as well as the detection of environmental pollutants such as heavy metals or organic toxic compounds. Current whole-cell biosensors are innovative alternatives to classical biosensors; however, there is still a need to advance decision making capabilities by developing novel biocomputing devices.Item Open Access Design of synthetic biological devices for detection and targeting human diseases(Elsevier, 2022-01-01) Hacıosmanoğlu, Nedim; Köse, Sıla; Ostaku, Julian; Köksaldi, İlkay Çisil; Saltepe, Behide; Şeker, Urartu Özgür Şafak; Singh, V.Interpreting signals coming from the surrounding environment and responding to these stimuli by adjusting physical or metabolic state is the most fundamental ability of living organisms. Repurposing these natural abilities for the detection and responding to different molecules is one of the key focuses of synthetic biology because the overall strategy could provide advanced solutions for different diseases. Also by being naturally suitable to the design-build-test-learn manner of synthetic biology, biosensors are great examples of what engineering and biology could achieve when they come together. Literature has many examples of intellectually designed biosensor systems, which may overachieve and outperform existing technologies with a completely biocompatible structure. In this chapter, design and application of these biosensor systems will be investigated.Item Open Access Genetic circuits combined with machine learning provides fast responding living sensors(Elsevier BV, 2021-04-15) Saltepe, Behide; Bozkurt, Eray Ulaş; Güngen, Murat Alp; Çiçek, A. Ercüment; Şeker, Urartu Özgür ŞafakWhole cell biosensors (WCBs) have become prominent in many fields from environmental analysis to biomedical diagnostics thanks to advanced genetic circuit design principles. Despite increasing demand on cost effective and easy-to-use assessment methods, a considerable amount of WCBs retains certain drawbacks such as long response time, low precision and accuracy. Here, we utilized a neural network-based architecture to improve the features of WCBs and engineered a gold sensing WCB which has a long response time (18 h). Two Long-Short Term-Memory (LSTM)-based networks were integrated to assess both ON/OFF and concentration dependent states of the sensor output, respectively. We demonstrated that binary (ON/OFF) network was able to distinguish between ON/OFF states as early as 30 min with 78% accuracy and over 98% in 3 h. Furthermore, when analyzed in analog manner, we demonstrated that network can classify the raw fluorescence data into pre-defined analyte concentration groups with high precision (82%) in 3 h. This approach can be applied to a wide range of WCBs and improve rapidness, simplicity and accuracy which are the main challenges in synthetic biology enabled biosensing.Item Open Access Genetic circuits to detect nanomaterial triggered toxicity through engineered heat shock response mechanism(American Chemical Society, 2019) Saltepe, Behide; Bozkurt, Eray Ulaş; Hacıosmanoğlu, Nedim; Şeker, Urartu Özgür ŞafakBiocompatibility assessment of nanomaterials has been of great interest due to their potential toxicity. However, conventional biocompatibility tests fall short of providing a fast toxicity report. We developed a whole cell based biosensor to track biocompatibility of nanomaterials with the aim of providing fast feedback to engineer them with lower toxicity levels. We engineered promoters of four heat shock response (HSR) proteins utilizing synthetic biology approaches. As an initial design, a reporter coding gene was cloned downstream of the selected promoter regions. Initial results indicated that native heat shock protein (HSP) promoter regions were not very promising to generate signals with low background signals. Introducing riboregulators to native promoters eliminated unwanted background signals almost entirely. Yet, this approach also led to a decrease in expected sensor signal upon stress treatment. Thus, a repression based genetic circuit, inspired by the HSR mechanism of Mycobacterium tuberculosis, was constructed. These genetic circuits could report the toxicity of quantum dot nanoparticles in 1 h. Our designed nanoparticle toxicity sensors can provide quick reports, which can lower the demand for additional experiments with more complex organisms.Item Open Access A recombinase-based genetic circuit for heavy metal monitoring(MDPI, 2022-02-16) Akboğa, Doğuş; Saltepe, BehideRapid progress in the genetic circuit design enabled whole-cell biosensors (WCBs) to become prominent in detecting an extensive range of analytes with promise in many fields, from medical diagnostics to environmental toxicity assessment. However, several drawbacks, such as high background signal or low precision, limit WCBs to transfer from proof-of-concept studies to real-world applications, particularly for heavy metal toxicity monitoring. For an alternative WCB module design, we utilized Bxb1 recombinase that provides tight control as a switch to increase dose-response behavior concerning leakiness. The modularity of Bxb1 recombinase recognition elements allowed us to combine an engineered semi-specific heat shock response (HSR) promoter, sensitive to stress conditions including toxic ions such as cadmium, with cadmium resistance regulatory elements; a cadmium-responsive transcription factor and its cognitive promoter. We optimized the conditions for the recombinase-based cadmium biosensor to obtain increased fold change and shorter response time. This system can be expanded for various heavy metals to make an all-in-one type of WCB, even using semi-specific parts of a sensing system. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.Item Open Access A self-actuated cellular protein delivery machine(American Chemical Society, 2019) Ahan, Recep Erdem; Kırpat, Büşra Merve; Saltepe, Behide; Şeker, Urartu Özgür ŞafakEngineered bacterial cells have great promise to solve global problems, yet they are hampered by a lack of convenient strategy for controlled protein release. A well-controlled protein translocation through cellular membranes is essential for cell-based protein delivery. Here we have developed a controlled protein release system by programming a bacterial autotransporter system named Ag43. Ag43 protein is engineered by adding a protease digestion site between its translocation and cargo domains. Once it is displayed on the cell surface, we managed to release the cargo proteins in defined conditions by processing environmental signals. The protein release in terms of time and quantity can be controlled through changing the inducer conditions. We thought that the release system can be adopted for complex genetic circuitries due to its simplicity. We implemented the protein release system to develop a cellular device that is able to release proteins in a sequence response to ordered chemical signals. We envision that development of genetically controlled protein release systems will improve the applications of synthetic organisms in cell based therapies, especially for cases with a need for controlled protein release using the cues from the biological environment.Item Open Access Synthetic genetic circuits to monitor nanomaterial triggered toxicity(2020-07) Saltepe, BehideIn the past decades, nanomaterial (NM) usage in various fields has been of great interest because of their unique properties that show tuneable optical and physical properties depending on their size. Yet, safety concerns of NMs on human or environment arise with increased NM usage. Thanks to their small size, NMs can easily penetrate through cellular barriers and their high surface-to-volume ratio makes them catalytically active creating stress on cells such as protein unfolding, DNA damage, ROS generation etc. Hence, biocompatibility assessment of NMs has been analyzed before their field application such as drug delivery and imaging which requiring human exposure. Yet, conventional biocompatibility tests fall short of providing a fast toxicity report. One aspect of the present thesis is to develop a living biosensor to report biocompatibility of NMs with the aim of providing fast feedback to engineer them with lower toxicity levels before applying on humans. For this purpose, heat shock response (HSR), which is the general stress indicator, was engineered utilizing synthetic biology approaches. Firstly, four highly expressed heat shock protein (HSP) promoters were selected among HSPs. In each construct, a reporter gene was placed under the control of these HSP promoters to track signal change upon stress (i.e., heat or NMs) exposure. However, initial results indicated that native HSPs are already active in cells to maintain cellular homeostasis. Moreover, they need to be engineered to create a proper stress sensor. Thus, these native HSP promoters were engineered with riboregulators and results indicated that these new designs eliminated unwanted background signals almost entirely. Yet, this approach also led to a decrease in expected sensor signal upon stress treatment. To increase the sensor signal, a positive feedback loop using bacterial communication, quorum sensing, method was constructed. HSR was integrated with QS circuit showed that signal level increased drastically. Yet, background signal also increased. Moreover, instead of using activation based HSR system as in Escherichia coli, repression based system was hypothesized to solve the problem. Thus, a repression based genetic circuit, inspired by the HSR mechanism of Mycobacterium tuberculosis, was constructed. These circuits could report the toxicity of quantum dots (QDs) in 1 hour. As a result, these NM toxicity sensors can provide quick reports, which can lower the demand for additional experiments with more complex organisms. As part of this study, a source detection circuit coupling HSR mechanism with metal induced transcription factors (TFs) has been constructed to report the source of the toxic compound. For this purpose, gold and cadmium were selected as model ions. In the engineered circuits, stress caused by metal ions activates expression of regulatory elements such as TFs of specific ions (GolS for gold and CadR and MerR(mut) for cadmium) and a site-specific recombinase. In the system, the recombinase inverts the promoter induced by TF-metal ion complex, and a reporter has been expressed based on the inducer showing the source of the stress as either gold or cadmium. Finally, a mammalian cellular toxicity sensor has been developed using similar approaches used in bacterial sensors. To begin with, two HSP families have been selected: HSP70 and α-Bcrystallin. Initial circuits were designed using promoter regions of both protein families to control the expression of a reporter, gfp. Both circuits were tested with heat and cadmium ions with varying concentrations and results showed that HSP70-based sensor had high background signal because of its active role in cellular homeostasis and protein folding in cells. Additionally, a slight increase was observed after heat treatment. Similar results were observed for α-Bcrystallin-based sensor; yet, these outcomes were not suitable for a desirable sensor requiring tight control. Thus, we decided to transfer the bacterial repression based toxicity sensor into mammalian cells. At the beginning, expression of the repressor, HspR, from M. tuberculosis was checked in HEK293T cell line and modified with nuclear localization signal (NLS) to localize the repressor in the nucleus. Further, a minimal promoter (SV40) controlling the expression of a reporter was engineered with single and double inverted repeats (IRs) for HspR binding. Then, HspR and engineered reporter circuits were co-trasfected to track signals at normal growth conditions and upon stress. Each circuit was tested with heat and cadmium treatment and results were showed repression of GFP expression by HspR at normal conditions, but no significant signal increase was observed upon stress. Hence, constructed mammalian circuits require more optimization to find optimum working conditions of sensors. To sum up, in this study, a powerful candidate to manufacture ordered gene circuits to detect nanomaterial-triggered toxicity has been demonstrated. Unlike previous studies utilizing HSR mechanism as stress biosensors, we re-purposed the HSR mechanism of both bacteria and mammalian cells with different engineering approaches (i.e., riboregulators, quorum sensing mechanism, promoter engineering). As a result, an easy-to-use, cheap and fast acting nanomaterial-triggered toxicity assessment tool has been developed. Also, initial principles of mammalian whole cell biosensor design for the same purpose have been indicated to expand the limited toxicity detection strategies utilizing mammalian cells. This study contributed for the detection of toxic NMs providing a feedback about the fate of these NMs so that one can engineer them to make biocompatible before field application.