Browsing by Author "Salim, A."
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access An asynchronous two-way relay system with full delay diversity in time-varying multipath environments(IEEE, 2015-02) Salim, A.; Duman, Tolga M.We consider design of asynchronous OFDM-based diamond two-way-relay (DTWR) systems in time-varying frequency-selective (doubly-selective) fading channels such as underwater acoustic (UWA) channels. In a DTWR channel, two users exchange their messages with the help of two relays. Most of the existing work on asynchronous DTWR systems assume only small relative propagation delays between the received signals at each node. However, in practical systems, significant delays may take place. Our proposed system is able to tolerate the delay even if it exceeds the length of the OFDM block which is almost inevitable in UWA channels. We provide analytical and numerical results to verify the advantages of the proposed scheme in mitigating large delays in different fading conditions.Item Open Access A delay-tolerant asynchronous two-way-relay system over doubly-selective fading channels(Institute of Electrical and Electronics Engineers Inc., 2015) Salim, A.; Duman, T. M.We consider design of asynchronous orthogonal frequency division multiplexing (OFDM) based diamond two-way-relay (DTWR) systems in a time-varying frequency-selective (doubly-selective) fading channel. In a DTWR system, two users exchange their messages with the help of two relays. Most of the existing works on asynchronous DTWR systems assume only small relative propagation delays between the received signals at each node that do not exceed the length of the cyclic-prefix (CP). However, in certain practical communication systems, significant differences in delays may take place, and hence existing solutions requiring excessively long CPs may be highly inefficient. In this paper, we propose a delay-independent CP insertion mechanism in which the CP length depends only on the number of subcarriers and the maximum delay spread of the corresponding channels. We also propose a symbol detection algorithm that is able to tolerate very long relative delays, that even exceed the length of the OFDM block itself, without a large increase in complexity. The proposed system is shown to significantly outperform other alternatives in the literature through a number of specific examples. © 2015 IEEE.Item Open Access Differential modulation for asynchronous two-way relay systems over frequency-selective fading channels(John Wiley and Sons Ltd, 2016) Salim, A.; Duman, T. M.We propose two schemes for asynchronous multi-relay two-way relay (MR-TWR) systems in which neither the users nor the relays know the channel state information. In an MR-TWR system, two users exchange their messages with the help of NR relays. Most of the existing works on MR-TWR systems based on differential modulation assume perfect symbol-level synchronization between all communicating nodes. However, this assumption is not valid in many practical systems, which makes the design of differentially modulated schemes more challenging. Therefore, we design differential modulation schemes that can tolerate timing misalignment under frequency-selective fading. We investigate the performance of the proposed schemes in terms of either probability of bit error or pairwise error probability. Through numerical examples, we show that the proposed schemes outperform existing competing solutions in the literature, especially for high signal-to-noise ratio values. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.Item Open Access Exchange of correlated binary sources in two-way relay networks using LDPC codes(Institute of Electrical and Electronics Engineers Inc., 2017) Salim, A.; Duman, T. M.We consider the problem of exchanging messages in two-way relay (TWR) systems when the sources are correlated binary sequences. In a TWR system, two users communicate simultaneously in both directions to exchange their messages with the help of a relay. Harnessing the fact that the users have access to their own non-compressed messages as side information, each user can compress its message according to the Slepian-Wolf coding strategy by using low-density parity-check codes, particularly, the syndrome approach. Through numerical examples, we show that the proposed scheme offers significant improvements in compression rates compared to the existing solutions in the literature.