BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Sak, Mustafa"

Filter results by typing the first few letters
Now showing 1 - 6 of 6
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Coreless fiber‐based whispering‐gallery‐mode assisted lasing from colloidal quantum well solids
    (Wiley-VCH Verlag, 2020-01) Sak, Mustafa; Taghipour, Nima; Delikanlı, Savaş; Shendre, S.; Tanrıöver, İbrahim; Gao, Y.; Yu, J.; Yanyan, Z.; Yoo, S.; Dang, C.; Demir, Hilmi Volkan; Foroutan, Sina
    Whispering gallery mode (WGM) resonators are shown to hold great promise to achieve high‐performance lasing using colloidal semiconductor nanocrystals (NCs) in solution phase. However, the low packing density of such colloidal gain media in the solution phase results in increased lasing thresholds and poor lasing stability in these WGM lasers. To address these issues, here optical gain in colloidal quantum wells (CQWs) is proposed and shown in the form of high‐density close‐packed solid films constructed around a coreless fiber incorporating the resulting whispering gallery modes to induce gain and waveguiding modes of the fiber to funnel and collect light. In this work, a practical method is presented to produce the first CQW‐WGM laser using an optical fiber as the WGM cavity platform operating at low thresholds of ≈188 µJ cm−2 and ≈1.39 mJ cm−2 under one‐ and two‐photon absorption pumped, respectively, accompanied with a record low waveguide loss coefficient of ≈7 cm−1 and a high net modal gain coefficient of ≈485 cm−1. The spectral characteristics of the proposed CQW‐WGM resonator are supported with a numerical model of full electromagnetic solution. This unique CQW‐WGM cavity architecture offers new opportunities to achieve simple high‐performance optical resonators for colloidal lasers.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Giant alloyed hot injection shells enable ultralow optical gain threshold in colloidal quantum wells
    (American Chemical Society, 2019) Altıntaş, Yemliha; Güngör, Kıvanç; Gao, Y.; Sak, Mustafa; Quliyeva, Ulviyya; Bappi, G.; Mutlugün, Evren; Sargent, E. H.; Demir, Hilmi Volkan
    As an attractive materials system for high-performance optoelectronics, colloidal nanoplatelets (NPLs) benefit from atomic-level precision in thickness, minimizing emission inhomogeneous broadening. Much progress has been made to enhance their photoluminescence quantum yield (PLQY) and photostability. However, to date, layer-by-layer growth of shells at room temperature has resulted in defects that limit PLQY and thus curtail the performance of NPLs as an optical gain medium. Here, we introduce a hot-injection method growing giant alloyed shells using an approach that reduces core/shell lattice mismatch and suppresses Auger recombination. Near-unity PLQY is achieved with a narrow full-width-at-half-maximum (20 nm), accompanied by emission tunability (from 610 to 650 nm). The biexciton lifetime exceeds 1 ns, an order of magnitude longer than in conventional colloidal quantum dots (CQDs). Reduced Auger recombination enables record-low amplified spontaneous emission threshold of 2.4 μJ cm–2under one-photon pumping. This is lower by a factor of 2.5 than the best previously reported value in nanocrystals (6 μJ cm–2 for CdSe/CdS NPLs). Here, we also report single-mode lasing operation with a 0.55 mJ cm–2 threshold under two-photoexcitation, which is also the best among nanocrystals (compared to 0.76 mJ cm–2 from CdSe/CdS CQDs in the Fabry–Pérot cavity). These findings indicate that hot-injection growth of thick alloyed shells makes ultrahigh performance NPLs.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Highly stable multicrown heterostructures of type-II nanoplatelets for ultralow threshold optical gain
    (American Chemical Society, 2019) Dede, Didem; Taghipour, Nima; Quliyeva, Ulviyya; Sak, Mustafa; Kelestemur, Yusuf; Güngör, Kıvanç; Demir, Hilmi Volkan
    Solution-processed type-II quantum wells exhibit outstanding optical properties, which make them promising candidates for light-generating applications including lasers and LEDs. However, they may suffer from poor colloidal stability under ambient conditions and show strong tendency to assemble into face-to-face stacks. In this work, to resolve the colloidal stability and uncontrolled stacking issues, we proposed and synthesized CdSe/CdSe1–xTex/CdS core/multicrown heteronanoplatelets (NPLs), controlling the amount of Te up to 50% in the crown without changing their thicknesses, which significantly increases their colloidal and photostability under ambient conditions and at the same time preserving their attractive optical properties. Confirming the final lateral growth of CdS sidewalls with X-ray photoelectron spectroscopy, energy-dispersive analysis, and photoelectron excitation spectroscopy, we found that the successful coating of this CdS crown around the periphery of conventional type-II NPLs prevents the unwanted formation of needle-like stacks, which results in reduction of the undesired scattering losses in thin-film samples of these NPLs. Owing to highly efficient exciton funneling from the outmost CdS crown accompanied by the reduced scattering and very low waveguide loss coefficient (∼18 cm–1), ultralow optical gain thresholds of multicrown type-II NPLs were achieved to be as low as 4.15 μJ/cm2 and 2.48 mJ/cm2 under one- and two-photon absorption pumping, respectively. These findings indicate that the strategy of using engineered advanced heterostructures of nanoplatelets provides solutions for improved colloidal stability and enables enhanced photonic performance.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Optical gain and lasing of colloidal semiconductor quantum wells intimately integrated into optical cavities
    (2019-07) Sak, Mustafa
    Colloidal semiconductor quantum wells, also known as nanoplatelets (NPLs), attract an increasingly greater deal of interest as a promising material platform for light-generating applications. The superior optical properties of NPLs including their ultra-large absorption cross-sections, purely homogeneous broadening, and suppressed Auger recombination make them highly attractive for solution-processable color convertors, LEDs and lasers. In this thesis, we studied the optical gain properties and performance levels of tailored heterostructures of such NPLs intimately integrated into various optical cavities. To do so, we systematically measured their amplified spontaneous emission under one- and twophoton absorption excitations. Also, with these hetero-NPLs as the gain media, we have proposed and demonstrated a new class of practical whispering gallery mode (WGM) NPL-fiber architecture with high stability and low lasing thresholds enabled by record low waveguide loss coefficients in its class. Moreover, we have developed a single-mode vertical-cavity surface-emitting laser (VCSEL) of these hetero-NPLs closely integrated into the wedge cavity of a pair of distributed Bragg reflectors, leading to a record low lasing threshold in its class. The findings obtained in these WGM NPL-laser and NPLVCSEL structures indicate that these NPLs are excellent for high-performance colloidal lasing.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Orientation-controlled nonradiative energy transfer to colloidal nanoplatelets: engineering dipole orientation factor
    (American Chemical Society, 2019) Erdem, Onur; Güngör, Kıvanç; Güzeltürk, Burak; Tanrıöver, İbrahim; Sak, Mustafa; Olutaş, Murat; Dede, Didem; Kelestemur, Yusuf; Demir, Hilmi Volkan
    We proposed and showed strongly orientation-controlled Förster resonance energy transfer (FRET) to highly anisotropic CdSe nanoplatelets (NPLs). For this purpose, we developed a liquid–air interface self-assembly technique specific to depositing a complete monolayer of NPLs only in a single desired orientation, either fully stacked (edge-up) or fully nonstacked (face-down), with near-unity surface coverage and across large areas over 20 cm2. These NPL monolayers were employed as acceptors in an energy transfer working model system to pair with CdZnS/ZnS core/shell quantum dots (QDs) as donors. We found the resulting energy transfer from the QDs to be significantly accelerated (by up to 50%) to the edge-up NPL monolayer compared to the face-down one. We revealed that this acceleration of FRET is accounted for by the enhancement of the dipole–dipole interaction factor between a QD-NPL pair (increased from 1/3 to 5/6) as well as the closer packing of NPLs with stacking. Also systematically studying the distance-dependence of FRET between QDs and NPL monolayers via varying their separation (d) with a dielectric spacer, we found out that the FRET rate scales with d–4 regardless of the specific NPL orientation. Our FRET model, which is based on the original Förster theory, computes the FRET efficiencies in excellent agreement with our experimental results and explains well the enhancement of FRET to NPLs with stacking. These findings indicate that the geometrical orientation of NPLs and thereby their dipole interaction strength can be exploited as an additional degree of freedom to control and tune the energy transfer rate.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Sub-single exciton optical gain threshold in colloidal semiconductor quantum wells with gradient alloy shelling
    (Nature Research, 2020) Taghipour, Nima; Delikanlı, Savaş; Shendre, S.; Sak, Mustafa; Li, M.; Işık, Furkan; Tanrıöver, İbrahim; Güzeltürk, B.; Sum, T. C.; Demir, Hilmi Volkan
    Colloidal semiconductor quantum wells have emerged as a promising material platform for use in solution-processable lasers. However, applications relying on their optical gain suffer from nonradiative Auger decay due to multi-excitonic nature of light amplification in II-VI semiconductor nanocrystals. Here, we show sub-single exciton level of optical gain threshold in specially engineered CdSe/CdS@CdZnS core/crown@gradient-alloyed shell quantum wells. This sub-single exciton ensemble-averaged gain threshold of (Ng)≈ 0.84 (per particle) resulting from impeded Auger recombination, along with a large absorption cross-section of quantum wells, enables us to observe the amplified spontaneous emission starting at an ultralow pump fluence of ~ 800 nJ cm−2, at least three-folds better than previously reported values among all colloidal nanocrystals. Finally, using these gradient shelled quantum wells, we demonstrate a vertical cavity surface-emitting laser operating at a low lasing threshold of 7.5 μJ cm−2. These results represent a significant step towards the realization of solution-processable electrically-driven colloidal lasers.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback