Optical gain and lasing of colloidal semiconductor quantum wells intimately integrated into optical cavities

Limited Access
This item is unavailable until:
2020-01-23

Date

2019-07

Editor(s)

Advisor

Demir, Hilmi Volkan

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Bilkent University

Volume

Issue

Pages

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

Colloidal semiconductor quantum wells, also known as nanoplatelets (NPLs), attract an increasingly greater deal of interest as a promising material platform for light-generating applications. The superior optical properties of NPLs including their ultra-large absorption cross-sections, purely homogeneous broadening, and suppressed Auger recombination make them highly attractive for solution-processable color convertors, LEDs and lasers. In this thesis, we studied the optical gain properties and performance levels of tailored heterostructures of such NPLs intimately integrated into various optical cavities. To do so, we systematically measured their amplified spontaneous emission under one- and twophoton absorption excitations. Also, with these hetero-NPLs as the gain media, we have proposed and demonstrated a new class of practical whispering gallery mode (WGM) NPL-fiber architecture with high stability and low lasing thresholds enabled by record low waveguide loss coefficients in its class. Moreover, we have developed a single-mode vertical-cavity surface-emitting laser (VCSEL) of these hetero-NPLs closely integrated into the wedge cavity of a pair of distributed Bragg reflectors, leading to a record low lasing threshold in its class. The findings obtained in these WGM NPL-laser and NPLVCSEL structures indicate that these NPLs are excellent for high-performance colloidal lasing.

Course

Other identifiers

Book Title

Citation

item.page.isversionof