Browsing by Author "Rothwarf, A."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Analytic modeling of patterned high-Tc superconductive bolometers: film and substrate interface effects(SPIE, 1998) Fardmanesh, Mehdi; Rothwarf, A.Superconducting film and substrate interface effects on the response of superconductive edge-transition bolometers are modeled with a one dimensional thermal model in closed form, for samples with large area patterns compared to the substrate thickness. The results from the model agree with experimental results on samples made of meander line patterned granular YBCO films on crystalline substrates, in both the magnitude and phase of the response versus modulation frequency up to about 100 KHz, the limit of the characterization setup. Using the fit of the calculated frequency response curves obtained from the model to the measured ones, values of the film-substrate and substrate-holder thermal boundary resistance, heat capacity of the superconducting film, and the thermal parameters of the substrate materials could be investigated. While the calculated magnitude and phase of the response of the SrTiO3 substrate samples obtained from the model is in a very good agreement with the measured values, the calculated response of the LaAlO3 and MgO substrate samples deviate slightly from the measured values at very low frequencies, increasing with an increase in the thermal conductivity of the substrate material. Using the fit of the calculated response to the measured values, film-substrate thermal boundary resistances in the range of 4.4* 10-3 to 4.4* 10-2 K-cm2-w-1 are obtained for different substrate materials. The effect of substrate optical absorption in the response of the samples is also investigated.Item Open Access Control of the Responsivity and the detectivity of superconductive edge-transition YBa2Cu3O7-x bolometers through substrate properties(Optical Society of America, 1999-08-01) Fardmanesh, M.; Scoles, K. J.; Rothwarf, A.The detectivity D* limits of YBa2Cu3O7-x bolometer on 0.05-cm-thick crystalline substrates are investigated, and a method to increase D* to greater than 10(9) (cm Hz(1/2))/W at a 20-mu m wavelength is proposed. Because the response increases proportionally with the bias current I-b, whereas the noise near T-c (the transition or critical temperature) of our MgO and SrTiO3 substrate samples does not, an increase in D* of these samples is obtained by an increase in I-b. Another limiting factor is the de thermal conductance G(0) of the device, which, although controlled by the substrate-holder thermal boundary resistance for our samples, can be changed by means of thinning the substrate to increase D*. The optimal amount of thinning depends on the substrate's thermal parameters and the radiation modulation frequency. D* in our samples is also found to follow the spectral-radiation absorption of the substrate material.Item Open Access DC characteristics of patterned YBa/sub 2/Cu/sub 3/O/sub 7-x/ superconducting thin-film bolometers: artifacts related to Joule heating, ambient pressure, and microstructure(Institute of Electrical and Electronics Engineers, 1998-06) Fardmanesh, M.; Scoles, K.; Rothwarf, A.Joule heating due to the bias current and resistance of the material in patterned YBa2Cu3O7-x superconducting films on 250-500-mu m-thick MgO, LaAlO3, and SrTiO3 crystalline substrates, results in a number of effects: 1) a temperature rise in the film with respect to the measured temperature at the bottom of the substrate; 2) a possible thermal runaway, which may be local or uniformly distributed in the film, depending upon the dimensions of the superconducting pattern relative to that of the substrate; 3) an apparently sharper normal-to-superconducting transition in the measure R versus T curve; and 4) decrease of T-c to 60 K (Delta T-x > 20 K) after being subjected to high-bias currents j similar to 10(5) A/cm(2) under vacuum, with recovery of T-c after exposure to room atmosphere. The magnitude of R at Tc-onset is found to be dependent on bias current in granular samples, with a lower R at currents higher than some on-set value. The slope of R versus T in the transition region in our granular samples is found to be lower at higher bias currents, since the widening of the transition overcomes the shift caused by the Joule heating. These various phenomena impact the responsivity of bolometers made from these films, as well as the predictions of possible attainable responsivity and speculations of mechanisms occurring in the films. In particular, misinterpretation of the Joule heating sharpening of the R versus T curve has led to predictions of responsivities over one order of magnitude higher than are justified, and shifts in properties of the films due to heating have been misinterpreted as nonequilibrium responses of the films.