Browsing by Author "Petrou, A."
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Open Access Light-induced paramagnetism in colloidal Ag+-doped CdSe nanoplatelets(American Chemical Society, 2021-03-25) Najafi, A.; Sharma, Manoj; Delikanlı, Savaş; Bhattacharya, A.; Murphy, J. R.; Pientka, J.; Sharma, A.; Quinn, A. P.; Erdem, Onur; Kattel, S.; Kelestemur, Y.; Kovalenko, M. V.; Rice, W. D.; Demir, Hilmi Volkan; Petrou, A.We describe a study of the magneto-optical properties of Ag+-doped CdSe colloidal nanoplatelets (NPLs) that were grown using a novel doping technique. In this work, we used magnetic circularly polarized luminescence and magnetic circular dichroism spectroscopy to study light-induced magnetism for the first time in 2D solution-processed structures doped with nominally nonmagnetic Ag+ impurities. The excitonic circular polarization (PX) and the exciton Zeeman splitting (ΔEZ) were recorded as a function of the magnetic field (B) and temperature (T). Both ΔEZ and PX have a Brillouin-function-like dependence on B and T, verifying the presence of paramagnetism in Ag+-doped CdSe NPLs. The observed light-induced magnetism is attributed to the transformation of nonmagnetic Ag+ ions into Ag2+, which have a nonzero magnetic moment. This work points to the possibility of incorporating these nanoplatelets into spintronic devices, in which light can be used to control the spin injection.Item Open Access Magneto-optical studies of CdSe/CdMnS/CdS core/multi-shell colloidal nanoplatelets(SPIE, 2016) Petrou, A.; Scrace, T. A.; Murphy, J. R.; Zhang, P.; Norden, T.; Zhang, T.; Thomay, T.; Cartwright, A. N.; Delikanlı, Savaş; Akgül, Mehmet Zafer; Demir, Hilmi VolkanWe studied the photoluminescence (PL)) from CdSe/CdMnS/CdS core/multi-shell colloidal nanoplatelets, a versatile platform to study the interplay of optical properties and nanomagnetism. The photoluminescence (PL) exhibits σ+ polarization in the applied magnetic field. Our measurement detects the presence of even a single magnetic monolayer shell. The PLL consists of a higher and a lower energy component; the latter exhibits a circular polarization peak. The time-resolved PL (trPL) shows a red shift as function of time delay. At early (later) times the trPL spectra coincide with the high (low) energy PL component. A model is proposed to interpret these results.Item Open Access Mn2+-doped CdSe/CdS core/multishell colloidal quantum wells enabling tunable carrier-dopant exchange interactions(American Chemical Society, 2015) Delikanlı, S.; Akgül, M. Z.; Murphy, J. R.; Barman, B.; Tsai, Y.; Scrace, T.; Zhang, P.; Bozok, B.; Hernández-Martínez, P.L.; Christodoulides, J.; Cartwright, A. N.; Petrou, A.; Demir, Hilmi VolkanIn this work, we report the manifestations of carrier-dopant exchange interactions in colloidal Mn2+-doped CdSe/CdS core/multishell quantum wells. The carrier-magnetic ion exchange interaction effects are tunable through wave function engineering. In our quantum well heterostructures, manganese was incorporated by growing a Cd0.985Mn0.015S monolayer shell on undoped CdSe nanoplatelets using the colloidal atomic layer deposition technique. Unlike previously synthesized Mn2+-doped colloidal nanostructures, the location of the Mn ions was controlled with atomic layer precision in our heterostructures. This is realized by controlling the spatial overlap between the carrier wave functions with the manganese ions by adjusting the location, composition, and number of the CdSe, Cd1-xMnxS, and CdS layers. The photoluminescence quantum yield of our magnetic heterostructures was found to be as high as 20% at room temperature with a narrow photoluminescence bandwidth of ∼22 nm. Our colloidal quantum wells, which exhibit magneto-optical properties analogous to those of epitaxially grown quantum wells, offer new opportunities for solution-processed spin-based semiconductor devices. © 2015 American Chemical Society.Item Open Access Thermodynamic silver doping of core/shell colloidal quantum wells imparted with paramagnetic properties emitting at near-infrared(American Chemical Society, 2023-05-29) Shabani, Farzan; Ahmad, Muhammad; Kumar, Satish; Delikanlı, Savaş; Işık, Furkan; Bhattacharya, A.; Petrou, A.; Demir, Hilmi VolkanTwo-dimensional (2D) core/shell nanoplatelets (NPLs) synthesized via the hot-injection method provide excellent thermal and chemical stability for high-temperature doping, where an expanded and flexible lattice is required. Here, a thermodynamic approach toward silver doping of these NPLs is proposed and demonstrated, which previously proved to be challenging due to the fast self-purification of the dopants with the introduction of the shell. Maintaining the doping procedure in the reversible regime ensured the integrity of the NPLs and allowed a high level of doping; however, the equilibrium condition is further complicated by environmental factors that affect the chemical activity of the cations and the surface composition of the NPLs. Two main deterioration mechanisms in the irreversible regime were observed: ZnS-shelled NPLs suffered preferential etching, while CdS-shelled NPLs underwent cleavage and fragmentation. Alloying of the shell minimized both mechanisms for CdZnS-shelled NPLs and preserved the metastable state of the NPLs, including their 2D shape and crystalline structure. Distribution of silver ions in the lattice of the NPLs directly affected the recombination dynamics and enabled fine-tuning of the near-infrared emission beside the exciton confinement. These silver-doped CdZnS-shelled NPLs are shown further to exhibit enhanced paramagnetic properties with Zeeman splitting and Brillouin-like bound-exciton polarization as a function of the magnetic field, critical for spintronic applicationsItem Open Access Time resolved photoluminescence study of magnetic CdSe/CdMnS/CdS core/multi-shell nanoplatelets(SPIE, 2017) Murphy, J. R.; Delikanlı, Savaş; Zhang, T.; Scrace, T. A.; Zhang, P.; Norden, T.; Thomay, T.; Cartwright, A. N.; Demir, Himli Volkan; Petrou, A.Colloidal semiconductor nanoplatelets (NPLs) are quasi 2D-nanostructures that are grown and processed inexpensively using a solution based method and thus have recently attracted considerable attention. We observe two features in the photoluminescence spectrum, suggesting two possible recombination channels. Their intensity ratio varies with temperature and two distinct temperature regions are identified; a low temperature region (10K < T < 90K) and a high temperature region (90K < T < 200K). This ratio increases with increasing temperature, suggesting that one recombination channel involves holes that are weakly localized with a localization energy of 0.043meV. A possible origin of these localized states are energy-variations in the xy-plane of the nanoplatelet. The presence of positive photoluminescence circular polarization in the magnetically-doped core/multi-shell NPLs indicates a hole-dopant exchange interaction and therefore the incorporated magnetic Manganese ions act as a marker that determines the location of the localized hole states.1 Time-resolved measurements show two distinct timescales (τfast and τslow) that can be modeled using a rate equation model. We identify these timescales as closely related to the corresponding recombination times for the channels. The stronger hole localization of one of these channels leads to a decreased electron-hole wave function overlap and thus a decreased oscillator strength and an increased lifetime. We show that we can model and understand the magnetic interaction of doped 2D-colloidal nanoplatelets which opens a pathway to solution processable spin controllable light sources. Copyright © 2017 SPIE.Item Open Access Time-resolved photoluminescence study of CdSe/CdMnS/CdS core/multi-shell nanoplatelets(American Institute of Physics Inc., 2016) Murphy, J. R.; Delikanli S.; Scrace, T.; Zhang, P.; Norden, T.; Thomay, T.; Cartwright, A. N.; Demir, Hilmi Volkan; Petrou, A.We used photoluminescence spectroscopy to resolve two emission features in CdSe/CdMnS/CdS and CdSe/CdS core/multi-shell nanoplatelet heterostructures. The photoluminescence from the magnetic sample has a positive circular polarization with a maximum centered at the position of the lower energy feature. The higher energy feature has a corresponding signature in the absorption spectrum; this is not the case for the low-energy feature. We have also studied the temporal evolution of these features using a pulsed-excitation/time-resolved photoluminescence technique to investigate their corresponding recombination channels. A model was used to analyze the temporal dynamics of the photoluminescence which yielded two distinct timescales associated with these recombination channels. The above results indicate that the low-energy feature is associated with recombination of electrons with holes localized at the core/shell interfaces; the high-energy feature, on the other hand, is excitonic in nature with the holes confined within the CdSe cores.