Browsing by Author "Ozkan, A. D."
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Biosystems engineering of prokaryotes with tumor-killing capacities(Bentham Science Publishers Ltd., 2016) Kalyoncu, E.; Olmez, T. T.; Ozkan, A. D.; Sarioglu, O. F.Certain bacteria selectively attack tumor tissues and trigger tumor shrinkage by producing toxins and modulating the local immune system, but their clinical utility is limited because of the dangers posed by systemic infection. Genetic engineering can be used to minimize the risks associated with tumor-targeting pathogens, as well as to increase their efficiency in killing tumor cells. Advances in genetic circuit design have led to the development of bacterial strains with enhanced tumor-targeting capacities and the ability to secrete therapeutics, cytotoxic proteins and prodrug-cleaving enzymes, which allows their safe and effective use for cancer treatment. The present review details the recent advances in the design and application of these modified bacterial strains.Item Open Access Fourier transform infrared spectroscopy as a novel approach for analyzing the biochemical effects of anionic surfactants on a surfactant-degrading acrobacter butzleri strain(OSA Publishing, 2013-12-17) Sarioglu, O. F.; Tamer, Y. T.; Ozkan, A. D.; Atabay, H. I.; Molva, C.; Tekinay, T.Anionic surfactant-biodegrading capability of an Arcobacter butzleri strain was analyzed under aerobic conditions. The A. butzleri isolate displayed efficient surfactant-biodegrading capacity for sodium dodecyl sulfate (SDS) at concentrations of up to 100 mg/L in 6 days, corresponding to 99.0% removal efficiency. Fourier transform infrared spectroscopy was applied to observe the effects of varying concentrations of SDS on the biochemistry of bacterial cells. Results suggest that protein secondary structures were altered in bacterial cells at sufficiently high SDS concentrations, concurrent with SDS biodegradation.Item Open Access Heparin mimetic peptide nanofiber gel promotes regeneration of full thickness burn injury(Elsevier Ltd, 2017) Yergoz, F.; Hastar, N.; Cimenci, C. E.; Ozkan, A. D.; Güler, Mustafa O.; Tekinay, A. B.; Tekinay, T.; Güler, Mustafa O.Burn injuries are one of the most common types of trauma worldwide, and their unique physiology requires the development of specialized therapeutic materials for their treatment. Here, we report the use of synthetic, functional and biodegradable peptide nanofiber gels for the improved healing of burn wounds to alleviate the progressive loss of tissue function at the post-burn wound site. These bioactive nanofiber gels form scaffolds that recapitulate the structure and function of the native extracellular matrix through signaling peptide epitopes, which can trigger angiogenesis through their affinity to basic growth factors. In this study, the angiogenesis-promoting properties of the bioactive scaffolds were utilized for the treatment of a thermal burn model. Following the excision of necrotic tissue, bioactive gels and control solutions were applied topically onto the wound area. The wound healing process was evaluated at 7, 14 and 21 days following injury through histological observations, immunostaining and marker RNA/protein analysis. Bioactive peptide nanofiber-treated burn wounds formed well-organized and collagen-rich granulation tissue layers, produced a greater density of newly formed blood vessels, and exhibited increased re-epithelialization and skin appendage development with minimal crust formation, while non-bioactive peptide nanofibers and the commercial wound dressing 3M™ Tegaderm™ did not exhibit significant efficiency over sucrose controls. Overall, the heparin-mimetic peptide nanofiber gels increased the rate of repair of burn injuries and can be used as an effective means of facilitating wound healing.