Browsing by Author "Ozgur, E."
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Clinical evaluation of DIAGNOVIR SARS-CoV-2 ultra-rapid antigen test performance compared to PCR-based testing(Nature Publishing Group, 2023-03-17) Seymen, Ali Aytaç; Gulten, E.; Ozgur, E.; Ortaç, Bülend; Akdemir, İ.; Cinar, G.; Saricaoglu, E.M.; Guney-Esken, G.; Akkus, E.; Can, F.; Karahan, Z. C.; Azap, A.; Tuncay, E.Coronavirus Disease-19 (COVID-19) is a highly contagious infectious disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The development of rapid antigen tests has contributed to easing the burden on healthcare and lifting restrictions by detecting infected individuals to help prevent further transmission of the virus. We developed a state-of-art rapid antigen testing system, named DIAGNOVIR, based on immune-fluorescence analysis, which can process and give the results in a minute. In our study, we assessed the performance of the DIAGNOVIR and compared the results with those of the qRT-PCR test. Our results demonstrated that the sensitivity and specificity of the DIAGNOVIR were 94% and 99.2%, respectively, with a 100% sensitivity and 96.97% specificity, among asymptomatic patients. In addition, DIAGNOVIR can detect SARS‑CoV‑2 with 100% sensitivity up to 5 days after symptom onset. We observed that the DIAGNOVIR Rapid Antigen Test’s limit of detection (LoD) was not significantly affected by the SARS‑CoV‑2 variants including Wuhan, alpha (B1.1.7), beta (B.1.351), delta (B.1.617.2) and omicron (B.1.1.529) variants, and LoD was calculated as 8 × 102, 6.81 × 101.5, 3.2 × 101.5, 1 × 103, and 1 × 103.5 TCID50/mL, respectively. Our results indicated that DIAGNOVIR can detect all SARS-CoV-2 variants in just seconds with higher sensitivity and specificity lower testing costs and decreased turnover time.Item Open Access Infrared absorption spectroscopy of monolayers with thin film interference coatings(Optical Society of America, 2017) Ayas, Sencer; Bakan, Gökhan; Ozgur, E.; Celebi, Kemal; Dana, AykutluWe report high performance Infrared spectroscopy platforms based on interference coatings on metal using CaF2 dielectric films and Ge2Sb2Te5 (GST) phase-change films. IR vibrational bands of proteins and organic monolayers are also detected.Item Open Access Label-Free Biosensing with High Selectivity in Complex Media using Microtoroidal Optical Resonators(Nature Publishing Group, 2015) Ozgur, E.; Toren P.; Aktas O.; Huseyinoglu, E.; Bayındır, MehmetAlthough label-free biosensors comprised of optical microcavities inherently possess the capability of resolving molecular interactions at individual level, this extreme sensitivity restricts their convenience for large scale applications by inducing vulnerability towards non-specific interactions that readily occur within complex media. Therefore, the use of optical microresonators for biosensing is mostly limited within strictly defined laboratory conditions, instead of field applications as early detection of cancer markers in blood, or identification of contamination in food. Here, we propose a novel surface modification strategy suitable for but not limited to optical microresonator based biosensors, enabling highly selective biosensing with considerable sensitivity as well. Using a robust, silane-based surface coating which is simultaneously protein resistant and bioconjugable, we demonstrate that it becomes possible to perform biosensing within complex media, without compromising the sensitivity or reliability of the measurement. Functionalized microtoroids are successfully shown to resist nonspecific interactions, while simultaneously being used as sensitive biological sensors. This strategy could pave the way for important applications in terms of extending the use of state-of-the-art biosensors for solving problems similar to the aforementioned.Item Open Access Polymeric nanocarriers for expected nanomedicine: Current challenges and future prospects(Royal Society of Chemistry, 2014) Daglar, B.; Ozgur, E.; Corman, M. E.; Uzun, L.; Demirel, G. B.Polymeric nanocarriers have an increasingly growing potential for clinical applications. The current and future expectation from a polymeric nanocarrier is to exhibit both diagnostic and therapeutic functions. Living organisms are very complex systems and have many challenges for a carrier system such as biocompatibility, biodistribution, side-effects, biological barriers. Therefore, a designed polymeric nanocarrier should possess multifunctional properties to overcome these obstacles towards its target site. However, currently there are few polymeric systems that can be used for both therapy and imaging in clinic studies. In the literature, there are many studies for developing new generation polymeric nanocarriers to obtain future smart and multifunctional nanomedicine. In this review, we discuss the new generation and promising polymeric nanocarriers, which exhibit active targeting, triggered release of contents, and imaging capability for in vivo studies.Item Open Access A smartphone based surface plasmon resonance imaging (SPRi) platform for on-site biodetection(Elsevier, 2017) Guner, H.; Ozgur, E.; Kokturk, G.; Celik, M.; Esen, E.; Topal, A. E.; Ayas, S.; Uludag, Y.; Elbuken, C.; Dana, A.We demonstrate a surface plasmon resonance imaging platform integrated with a smartphone to be used in the field with high-throughput biodetection. Inexpensive and disposable SPR substrates are produced by metal coating of commercial Blu-ray discs. A compact imaging apparatus is fabricated using a 3D printer which allows taking SPR measurements from more than 20.000 individual pixels. Real-time bulk refractive index change measurements yield noise equivalent refractive index changes as low as 4.12 × 10−5 RIU which is comparable with the detection performance of commercial instruments. As a demonstration of a biological assay, we have shown capture of mouse IgG antibodies by immobilized layer of rabbit anti-mouse (RAM) IgG antibody with nanomolar level limit of detection. Our approach in miniaturization of SPR biosensing in a cost-effective manner could enable realization of portable SPR measurement systems and kits for point-of-care applications.