Browsing by Author "Mirza, Ali H."
Now showing 1 - 8 of 8
- Results Per Page
- Sort Options
Item Open Access Boosted adaptive filters(Elsevier, 2018) Kari, Dariush; Mirza, Ali H.; Khan, Farhan; Özkan, H.; Kozat, Süleyman SerdarWe introduce the boosting notion of machine learning to the adaptive signal processing literature. In our framework, we have several adaptive filtering algorithms, i.e., the weak learners, that run in parallel on a common task such as equalization, classification, regression or filtering. We specifically provide theoretical bounds for the performance improvement of our proposed algorithms over the conventional adaptive filtering methods under some widely used statistical assumptions. We demonstrate an intrinsic relationship, in terms of boosting, between the adaptive mixture-of-experts and data reuse algorithms. Additionally, we introduce a boosting algorithm based on random updates that is significantly faster than the conventional boosting methods and other variants of our proposed algorithms while achieving an enhanced performance gain. Hence, the random updates method is specifically applicable to the fast and high dimensional streaming data. Specifically, we investigate Recursive Least Square-based and Least Mean Square-based linear and piecewise-linear regression algorithms in a mixture-of-experts setting and provide several variants of these well-known adaptation methods. Furthermore, we provide theoretical bounds for the computational complexity of our proposed algorithms. We demonstrate substantial performance gains in terms of mean squared error over the base learners through an extensive set of benchmark real data sets and simulated examples.Item Open Access Computer network intrusion detection using sequential LSTM neural networks autoencoders(IEEE, 2018-05) Mirza, Ali H.; Coşan, SelinIn this paper, we introduce a sequential autoencoder framework using long short term memory (LSTM) neural network for computer network intrusion detection. We exploit the dimensionality reduction and feature extraction property of the autoencoder framework to efficiently carry out the reconstruction process. Furthermore, we use the LSTM networks to handle the sequential nature of the computer network data. We assign a threshold value based on cross-validation in order to classify whether the incoming network data sequence is anomalous or not. Moreover, the proposed framework can work on both fixed and variable length data sequence and works efficiently for unforeseen and unpredictable network attacks. We then also use the unsupervised version of the LSTM, GRU, Bi-LSTM and Neural Networks. Through a comprehensive set of experiments, we demonstrate that our proposed sequential intrusion detection framework performs well and is dynamic, robust and scalable.Item Open Access Computer network intrusion detection using various classifiers and ensemble learning(IEEE, 2018) Mirza, Ali H.In this paper, we execute anomaly detection over the computer networks using various machine learning algorithms. We then combine these algorithms to boost the overall performance. We implement three different types of classifiers, i.e, neural networks, decision trees and logistic regression. We then boost the overall performance of the intrusion detection algorithm using ensemble learning. In ensemble learning, we employ weighted majority voting scheme based on the individual classifier performance. We demonstrate a significant increase in the accuracy through a set of experiments KDD Cup 99 data set for computer network intrusion detection.Item Open Access Efficient online learning with improved LSTM neural networks(Elsevier, 2020-04-14) Mirza, Ali H.; Kerpiçci, Mine; Kozat, Süleyman S.We introduce efficient online learning algorithms based on the Long Short Term Memory (LSTM) networks that employ the covariance information. In particular, we introduce the covariance of the present and one-time step past input vectors into the gating structure of the LSTM networks. Additionally, we include the covariance of the output vector, and we learn their weight matrices to improve the learning performance of the LSTM networks where we also provide their updates. We reduce the number of system parameters through the weight matrix factorization where we convert the LSTM weight matrices into two smaller matrices in order to achieve high learning performance with low computational complexity. Moreover, we apply the introduced approach to the Gated Recurrent Unit (GRU) architecture. In our experiments, we illustrate significant performance improvements achieved by our methods on real-life datasets with respect to the vanilla LSTM and vanilla GRU networks.Item Open Access Energy-Efficient LSTM networks for online learning(IEEE, 2020) Ergen, T.; Mirza, Ali H.; Kozat, Süleyman SerdarWe investigate variable-length data regression in an online setting and introduce an energy-efficient regression structure build on long short-term memory (LSTM) networks. For this structure, we also introduce highly effective online training algorithms. We first provide a generic LSTM-based regression structure for variable-length input sequences. To reduce the complexity of this structure, we then replace the regular multiplication operations with an energy-efficient operator, i.e., the ef-operator. To further reduce the complexity, we apply factorizations to the weight matrices in the LSTM network so that the total number of parameters to be trained is significantly reduced. We then introduce online training algorithms based on the stochastic gradient descent (SGD) and exponentiated gradient (EG) algorithms to learn the parameters of the introduced network. Thus, we obtain highly efficient and effective online learning algorithms based on the LSTM network. Thanks to our generic approach, we also provide and simulate an energy-efficient gated recurrent unit (GRU) network in our experiments. Through an extensive set of experiments, we illustrate significant performance gains and complexity reductions achieved by the introduced algorithms with respect to the conventional methods.Item Open Access Online additive updates with FFT-IFFT operator on the GRU neural networks(IEEE, 2018) Mirza, Ali H.In this paper, we derived the online additive updates of gated recurrent unit (GRU) network by using fast fourier transform-inverse fast fourier transform (FFT-IFFT) operator. In the gating process of the GRU networks, we work in the frequency domain and execute all the linear operations. For the non-linear functions in the gating process, we first shift back to the time domain and then apply non-linear GRU gating functions. Furthermore, in order to reduce the computational complexity and speed up the training process, we apply weight matrix factorization (WMF) on the FFT-IFFT variant GRU network. We then compute the online additive updates of the FFT-WMF based GRU networks using stochastic gradient descent (SGD) algorithm. We also used long short-term memory (LSTM) networks in place of the GRU networks. Through an extensive set of experiments, we illustrate that our proposed algorithm achieves a significant increase in performance with a decrease in computational complexity.Item Open Access Online boosting algorithm for regression with additive and multiplicative updates(IEEE, 2018-05) Mirza, Ali H.In this paper, we propose a boosted regression algorithm in an online framework. We have a linear combination of the estimated output for each weak learner and weigh each of the estimated output differently by introducing ensemble coefficients. We then update the ensemble weight coefficients using both additive and multiplicative updates along with the stochastic gradient updates of the regression weight coefficients. We make the proposed algorithm robust by introducing two critical factors; significance and penalty factor. These two factors play a crucial role in the gradient updates of the regression weight coefficients and in increasing the regression performance. The proposed algorithm is guaranteed to converge in terms of exponentially decaying regret bound in terms of number of weak learners. We then demonstrate the performance of our proposed algorithm on both synthetic as well as real-life data sets.Item Open Access Variants of combinations of additive and multiplicative updates for GRU neural networks(IEEE, 2018) Mirza, Ali H.In this paper, we formulate several variants of the mixture of both the additive and multiplicative updates using stochastic gradient descent (SGD) and exponential gradient (EG) algorithms respectively. We employ these updates on the gated recurrent unit (GRU) networks. We then derive the gradient-based updates for the parameters of the GRU networks. We propose four different updates as a mean, minimum, even-odd and balanced set of updates for the GRU network. Through an extensive set of experiments, we demonstrate that these update variants perform better than simple SGD and EG updates. Overall, we observed that GRU-Mean update achieved the minimum cumulative and steady-state error performance. We also simulated the same set of experiments on the long short-term memory (LSTM) networks.