BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Lee, I. H"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Green/yellow solid state lighting via radiative and nonradiative energy transfer involving colloidal semiconductor nanocrystals
    (IEEE, 2009-08-05) Nizamoglu, S.; Sari, E.; Baek, J. H.; Lee, I. H; Demir, Hilmi Volkan
    LEDs made of In(x)Ga(1-x)N and (Al(x)Ga(1-x))(1-y)In(y)P suffer from significantly reduced quantum efficiency and luminous efficiency in the green/yellow spectral ranges. To address these problems, we present the design, growth, fabrication, hybridization, and characterization of proof-of-concept green/yellow hybrid LEDs that utilize radiative and nonradiative [Forster resonance energy transfer (FRET)] energy transfers in their colloidal semiconductor nanocrystals (NCs) integrated on near-UV LEDs. In our first NC-LED, we realize a color-converted LED that incorporate green-emitting CdSe/ZnS core/shell NCs (lambda(PL) = 548 nm) on near-UV InGaN/GaN LEDs (lambda(EL) = 379 nm). In our second NC-LED, we implement a color-converted FRET-enhanced LED. For that, we hybridize a custom-design assembly of cyan-and green-emitting CdSe/ZnS core/shell NCs (lambda(PL) = 490 and 548 nm) on near-UV LEDs. Using a proper mixture of differently sized NCs, we obtain a quantum efficiency enhancement of 9% by recycling trapped excitons via FRET. With FRET-NC-LEDs, we show that it is possible to obtain a luminous efficacy of 425 lm/W(opt) and a luminous efficiency of 94 lm/W, using near-UV LEDs with a 40% external quantum efficiency. Finally, we investigate FRET-converted light-emitting structures that use nonradiative energy transfer directly from epitaxial quantum wells to colloidal NCs. These proof-of-concept demonstrations show that FRET-based NC-LEDs hold promise for efficient solid-state lighting in green/yellow.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback