BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Lagzi, I."

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    A dormant reagent reaction-diffusion method for the generation of Co-Fe Prussian Blue analogue periodic precipitate particle libraries
    (Wiley-VCH GmbH, 2023-08-25) Tootoonchian, Pedram; Kwiczak-Yiğitbaşı, Joanna; Turab Ali Khan, Muhammad; Chalil Oglou, Ramadan; Holló, G.; Karadaş, Ferdi; Lagzi, I.; Baytekin, Bilge
    Liesegang patterns that develop as a result of reaction-diffusion can simultaneously form products with slightly different sizes spatially separated in a single medium. We show here a reaction-diffusion method using a dormant reagent (citrate) for developing Liesegang patterns of cobalt hexacyanoferrate Prussian Blue analog (PBA) particle libraries. This method slows the precipitation reaction and produces different-sized particles in a gel medium at different locations. The gel-embedded particles are still catalytically active. Finally, the applicability of the new method to other PBAs and 2D systems is presented. The method proves promising for obtaining similar inorganic framework libraries with catalytic abilities. © 2023 The Authors. Chemistry - A European Journal published by Wiley-VCH GmbH.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Mechanical control of periodic precipitation in stretchable gels to retrieve information on slastic deformation and for the complex patterning of matter
    (Wiley-VCH Verlag, 2020-03) Morsali, Mohammad; Khan, Muhammad Turab Ali; Ashirov, Rahym; Holló, G.; Baytekin, H. Tarık; Lagzi, I.; Baytekin, Bilge
    Material design using nonequilibrium systems provides straightforward access to complexity levels that are possible through dynamic processes. Pattern formation through nonequilibrium processes and reaction–diffusion can be used to achieve this goal. Liesegang patterns (LPs) are a kind of periodic precipitation patterns formed through reaction–diffusion. So far, it has been shown that the periodic band structure of LPs and the geometry of the pattern can be controlled by experimental conditions and external fields (e.g., electrical or magnetic). However, there are no examples of these systems being used to retrieve information about the changes in the environment as they form, and there are no studies making use of these patterns for complex material preparation. This work shows the formation of LPs by a diffusion–precipitation reaction in a stretchable hydrogel and the control of the obtained patterns by the unprecedented and uncommon method of mechanical input. Additionally, how to use this protocol and how deviations from “LP behavior” of the patterns can be used to “write and store” information about the time, duration, extent, and direction of gel deformation are presented. Finally, an example of using complex patterning to deposit polypyrrole by using precipitation patterns is shown as a template.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback