Browsing by Author "Kuznetsov, A. I."
Now showing 1 - 6 of 6
- Results Per Page
- Sort Options
Item Open Access Control of LED emission with functional dielectric metasurfaces(Wiley, 2020) Khaidarov, E.; Liu, Z.; Paniagua-Domínguez, R.; Ha, S. T.; Valuckas, V.; Liang, X.; Akimov, Y.; Bai, P.; Png, C. E.; Demir, Hilmi Volkan; Kuznetsov, A. I.The improvement of light‐emitting diodes (LEDs) is one of the major goals of optoelectronics and photonics research. LED integration to complex photonic devices requires precise control of the wavefront of the emitted light. Metasurfaces are spatial arrangements of engineered scatters that may enable this light manipulation capability with unprecedented resolution. Most of these devices, however, are only able to function properly under irradiation of laser light with a large spatial coherence. LEDs, on the other hand, have angularly broad, Lambertian‐like emission patterns characterized by a low spatial coherence, which makes the integration of metasurface devices on LEDs challenging. A novel concept for metasurface integration on LED is proposed, using a cavity to increase the LED spatial coherence through an angular collimation. The experimental demonstration of the proposed concept is implemented on a GaP LED architecture including a hybrid metallic‐Bragg cavity. By integrating a silicon metasurface on top, two different functionalities of these compact devices are demonstrated: directional LED emission at a desired angle and LED emission of a vortex beam with an orbital angular momentum. The presented concept is general, being applicable to other incoherent light sources and enabling metasurfaces designed for plane waves to work with incoherent light emitters.Item Open Access High-efficiency and low-loss gallium nitride dielectric metasurfaces for nanophotonics at visible wavelengths(American Institute of Physics Inc., 2017) Emani, N. K.; Khaidarov, E.; Paniagua-Domínguez, R.; Fu, Y. H.; Valuckas, V.; Lu S.; Zhang X.; Tan S.T.; Demir, Hilmi Volkan; Kuznetsov, A. I.The dielectric nanophotonics research community is currently exploring transparent material platforms (e.g., TiO2, Si3N4, and GaP) to realize compact high efficiency optical devices at visible wavelengths. Efficient visible-light operation is key to integrating atomic quantum systems for future quantum computing. Gallium nitride (GaN), a III-V semiconductor which is highly transparent at visible wavelengths, is a promising material choice for active, nonlinear, and quantum nanophotonic applications. Here, we present the design and experimental realization of high efficiency beam deflecting and polarization beam splitting metasurfaces consisting of GaN nanostructures etched on the GaN epitaxial substrate itself. We demonstrate a polarization insensitive beam deflecting metasurface with 64% and 90% absolute and relative efficiencies. Further, a polarization beam splitter with an extinction ratio of 8.6/1 (6.2/1) and a transmission of 73% (67%) for p-polarization (s-polarization) is implemented to demonstrate the broad functionality that can be realized on this platform. The metasurfaces in our work exhibit a broadband response in the blue wavelength range of 430-470 nm. This nanophotonic platform of GaN shows the way to off- and on-chip nonlinear and quantum photonic devices working efficiently at blue emission wavelengths common to many atomic quantum emitters such as Ca+ and Sr+ ions.Item Open Access Hybrid dielectric-plasmonic nanoantenna with multiresonances for subwavelength photon sources(American Chemical Society, 2023-03-15) Dmitriev, P. A.; Lassalle, E.; Ding, L.; Pan, Z.; Neo, D. C. J.; Valuckas, V.; Paniagua-D., R.; Yang, J. K. W.; Demir, Hilmi Volkan; Kuznetsov, A. I.The enhancement of the photoluminescence of quantum dots induced by an optical nanoantenna has been studied considerably, but there is still significant interest in optimizing and miniaturizing such structures, especially when accompanied by an experimental demonstration. Most of the realizations use plasmonic platforms, and some also use all-dielectric nanoantennas, but hybrid dielectric-plasmonic (subwavelength) nanostructures have been very little explored. In this paper, we propose and demonstrate single subwavelength hybrid dielectric-plasmonic optical nanoantennas coupled to localized quantum dot emitters that constitute efficient and bright unidirectional photon sources under optical pumping. To achieve this, we devised a silicon nanoring sitting on a gold mirror with a 10 nm gap in-between, where an assembly of colloidal quantum dots is embedded. Such a structure supports both (radiative) antenna mode and (nonradiative) gap mode resonances, which we exploit for the dual purpose of out-coupling the light emitted by the quantum dots into the far-field with out-of-plane directivity, and for enhancing the excitation of the dots by the optical pump. Moreover, almost independent control of the resonance spectral positions can be achieved by simple tuning of geometrical parameters such as the ring inner and outer diameters, allowing us to conveniently adjust these resonances with respect to the quantum dots emission and absorption wavelengths. Using the proposed architecture, we obtain experimentally average fluorescence enhancement factors up to 654× folds mainly due to high radiative efficiencies, and associated with a directional emission of the photoluminescence into a cone of ±17° in the direction normal to the sample plane. We believe the solution presented here to be viable and relevant for the next generation of light-emitting devices.Item Open Access Lasing action in single subwavelength particles supporting supercavity modes(American Chemical Society, 2020-05) Mylnikov, V.; Ha, S. T.; Pan, Z.; Valuckas, V.; Paniagua-Domínguez, R.; Demir, Hilmi Volkan; Kuznetsov, A. I.On-chip light sources are critical for the realization of fully integrated photonic circuitry. So far, semiconductor miniaturized lasers have been mainly limited to sizes on the order of a few microns. Further reduction of sizes is challenging fundamentally due to the associated radiative losses. While using plasmonic metals helps to reduce radiative losses and sizes, they also introduce Ohmic losses hindering real improvements. In this work, we show that, making use of quasibound states in the continuum, or supercavity modes, we circumvent these fundamental issues and realize one of the smallest purely semiconductor nanolasers thus far. Here, the nanolaser structure is based on a single semiconductor nanocylinder that intentionally takes advantage of the destructive interference between two supported optical modes, namely Fabry–Perot and Mie modes, to obtain a significant enhancement in the quality factor of the cavity. We experimentally demonstrate the concept and obtain optically pumped lasing action using GaAs at cryogenic temperatures. The optimal nanocylinder size is as small as 500 nm in diameter and only 330 nm in height with a lasing wavelength around 825 nm, corresponding to a size-to-wavelength ratio as low as 0.6.Item Open Access Room-temperature lasing in colloidal nanoplatelets via mie-resonant bound states in the continuum(American Chemical Society, 2020) Wu, M.; Ha, S. T.; Shendre, S.; Durmuşoğlu, E. G.; Koh, W.-K.; Abujetas, D. R.; Sanchez-Gil, J. A.; Paniagua-Domínguez, R.; Demir, Hilmi Volkan; Kuznetsov, A. I.Solid-state room-temperature lasing with tunability in a wide range of wavelengths is desirable for many applications. To achieve this, besides an efficient gain material with a tunable emission wavelength, a high quality-factor optical cavity is essential. Here, we combine a film of colloidal CdSe/CdZnS core–shell nanoplatelets with square arrays of nanocylinders made of titanium dioxide to achieve optically pumped lasing at visible wavelengths and room temperature. The all-dielectric arrays support bound states in the continuum (BICs), which result from lattice-mediated Mie resonances and boast infinite quality factors in theory. In particular, we demonstrate lasing from a BIC that originates from out-of-plane magnetic dipoles oscillating in phase. By adjusting the diameter of the cylinders, we tune the lasing wavelength across the gain bandwidth of the nanoplatelets. The spectral tunability of both the cavity resonance and nanoplatelet gain, together with efficient light confinement in BICs, promises low-threshold lasing with wide selectivity in wavelengths.Item Open Access Ultrahigh-efficiency aqueous flat nanocrystals of CdSe/CdS@Cd1−xZnxS colloidal core/crown@alloyed-shell quantum wells(Royal Society of Chemistry, 2019) Shendre, S.; Delikanlı, Savaş; Li, M.; Dede, Didem; Pan, Z.; Ha, S. T.; Fu, Y. H.; Hernández-Martínez, Pedro L.; Yu, J.; Erdem, Onur; Kuznetsov, A. I.; Dang, C.; Sum, T. C.; Demir, Hilmi VolkanColloidal semiconductor nanoplatelets (NPLs) are highly promising luminescent materials owing to their exceptionally narrow emission spectra. While high-efficiency NPLs in non-polar organic media can be obtained readily, NPLs in aqueous media suffer from extremely low quantum yields (QYs), which completely undermines their potential, especially in biological applications. Here, we show high-efficiency water-soluble CdSe/CdS@Cd1−xZnxS core/crown@shell NPLs formed by layer-by-layer grown and composition-tuned gradient Cd1−xZnxS shells on CdSe/CdS core/crown seeds. Such control of shell composition with monolayer precision and effective peripheral crown passivation, together with the compact capping density of short 3-mercaptopropionic acid ligands, allow for QYs reaching 90% in water, accompanied by a significantly increased photoluminescence lifetime (∼35 ns), indicating the suppression of nonradiative channels in these NPLs. We also demonstrate the controlled attachment of these NPLs without stacking at the nanoscale by taking advantage of their 2D geometry and hydrophilicity. This is a significant step in achieving controlled assemblies and overcoming the stacking process, which otherwise undermines their film formation and performance in optoelectronic applications. Moreover, we show that the parallel orientation of such NPLs achieved by the controlled attachment enables directed emission perpendicular to the surface of the NPL films, which is highly advantageous for light extraction in light-emitting platforms..