Browsing by Author "Klinman, D. M."
Now showing 1 - 4 of 4
- Results Per Page
- Sort Options
Item Open Access Gene network landscape of mouse splenocytes reveals integrin complex as the A151 ODN-responsive hub molecule in the immune transcriptome(Cell Press, 2023-02-01) Yazar, Volkan; Yılmaz, İsmail Cem; Bülbül, Artun; Klinman, D. M.; Gürsel, İhsanHomeostatic restoration of an inflammatory response requires quenching of the immune system after pathogen threats vanish. A continued assault orchestrated by host defense results in tissue destruction or autoimmunity. A151 is the epitome of synthetic oligodeoxynucleotides (ODNs) that curb the immune response by a subset of white corpuscles through repetitive telomere-derived TTAGGG sequences. Currently, the genuine effect of A151 on the immune cell transcriptome remains unknown. Here, we leveraged an integrative approach where weighted gene co-expression network analysis (WGCNA), differential gene expression analysis, and gene set enrichment analysis (GSEA) of our in-house microarray datasets aided our understanding of how A151 ODN suppresses the immune response in mouse splenocytes. Our bioinformatics results, together with experimental validations, indicated that A151 ODN acts on components of integrin complexes, Itgam and Itga6, to interfere with immune cell adhesion and thereby suppresses the immune response in mice. Moreover, independent lines of evidence in this work converged on the observation that cell adhesion by integrin complexes serves as a focal point for cellular response to A151 ODN treatment in immune cells. Taken together, the outcome of this study sheds light on the molecular basis of immune suppression by a clinically useful DNA-based therapeutic agent.Item Open Access Plasmacytoid dendritic cell response to CpG ODN correlates with CXCL16 expression and is inhibited by ox-LDL(Hindawi, 2013) Gursel, M.; Klinman, D. M.; Gursel, I.Structurally distinct classes of synthetic CpG oligonucleotides (ODN) differentially activate human immune cells. K-type ODN trigger plasmacytoid dendritic cells (pDCs) to differentiate and produce TNF alpha. In contrast, D-type ODN stimulate large amounts of IFN alpha secretion from pDCs. The cell-surface receptor CXCL16 was previously shown to influence the nature and specificity of CpG ODN-induced immune activation. Here, we evaluated the expression and function of CXCL16 on pDC from healthy volunteers. We report that increased CXCL16 expression correlated with enhanced in vitro response exclusively to D-type CpG ODN. Conversely, enzymatic digestion of the receptor resulted in a decrease in IFN alpha production. Moreover, ox-LDL presence significantly inhibited D-ODN mediated IFN alpha production by pDCs. Coculture of enriched pDCs with the CXCR6 expressing Jurkat T cells decreased the activation threshold of these cells responding to D-ODN, suggesting that CXCL16/CXCR6 interaction may play an important role in modifying the response of pDCs to environmental danger signals.Item Open Access Structure, mechanism and therapeutic utility of immunosuppressive oligonucleotides(Academic Press, 2016) Bayik D.; Gursel, I.; Klinman, D. M.Synthetic oligodeoxynucleotides that can down-regulate cellular elements of the immune system have been developed and are being widely studied in preclinical models. These agents vary in sequence, mechanism of action, and cellular target(s) but share the ability to suppress a plethora of inflammatory responses. This work reviews the types of immunosuppressive oligodeoxynucleotide (Sup ODN) and compares their therapeutic activity against diseases characterized by pathologic levels of immune stimulation ranging from autoimmunity to septic shock to cancer (see graphical abstract). The mechanism(s) underlying the efficacy of Sup ODN and the influence size, sequence and nucleotide backbone on function are considered. © Published by Elsevier Ltd.Item Open Access A suppressive oligodeoxynucleotide expressing TTAGGG motifs modulates cellular energetics through the mTOR signaling pathway(Oxford University Press, 2020) Yazar, Volkan; Kılıç, Gizem; Bulut, Özlem; Canavar-Yıldırım, Tuğçe; Yağcı, Fuat C.; Gamze, Aykut; Klinman, D. M.; Gürsel, M.; Gürsel, İhsanImmune-mediated inflammation must be down-regulated to facilitate tissue remodeling during homeostatic restoration of an inflammatory response. Uncontrolled or over-exuberant immune activation can cause autoimmune diseases, as well as tissue destruction. A151, the archetypal example of a chemically synthesized suppressive oligodeoxynucleotide (ODN) based on repetitive telomere-derived TTAGGG sequences, was shown to successfully down-regulate a variety of immune responses. However, the degree, duration and breadth of A151-induced transcriptome alterations remain elusive. Here, we performed a comprehensive microarray analysis in combination with Ingenuity Pathway Analysis (IPA) using murine splenocytes to investigate the underlying mechanism of A151-dependent immune suppression. Our results revealed that A151 significantly down-regulates critical mammalian target of rapamycin (mTOR) activators (Pi3kcd, Pdpk1 and Rheb), elements downstream of mTOR signaling (Rps6ka1, Myc, Stat3 and Slc2a1), an important component of the mTORC2 protein complex (Rictor) and Mtor itself. The effects of A151 on mTOR signaling were doseand time-dependent. Moreover, flow cytometry and immunoblotting analyses demonstrated that A151 is able to reverse mTOR phosphorylation comparably to the well-known mTOR inhibitor rapamycin. Furthermore, Seahorse metabolic assays showed an A151 ODN-induced decrease in both oxygen consumption and glycolysis implying that a metabolically inert state in macrophages could be triggered by A151 treatment. Overall, our findings suggested novel insights into the mechanism by which the immune system is metabolically modulated by A151 ODN.