BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Kazar, O."

Filter results by typing the first few letters
Now showing 1 - 2 of 2
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Effective mass of electron in monolayer graphene: Electron-phonon interaction
    (AIP Publishing LLC, 2013-01-25) Tiras, E.; Ardali, S.; Tiras, T.; Arslan, E.; Cakmakyapan, S.; Kazar, O.; Hassan, J.; Janzén, E.; Özbay, Ekmel
    Shubnikov-de Haas (SdH) and Hall effect measurements performed in a temperature range between 1.8 and 275 K, at an electric field up to 35 kV m -1 and magnetic fields up to 11 T, have been used to investigate the electronic transport properties of monolayer graphene on SiC substrate. The number of layers was determined by the use of the Raman spectroscopy. The carrier density and in-plane effective mass of electrons have been obtained from the periods and temperature dependencies of the amplitude of the SdH oscillations, respectively. The effective mass is in good agreement with the current results in the literature. The two-dimensional (2D) electron energy relaxations in monolayer graphene were also investigated experimentally. The electron temperature (Te) of hot electrons was obtained from the lattice temperature (TL) and the applied electric field dependencies of the amplitude of SdH oscillations. The experimental results for the electron temperature dependence of power loss indicate that the energy relaxation of electrons is due to acoustic phonon emission via mixed unscreened piezoelectric interaction and deformation-potential scattering.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Magnetotransport study on AlInN/(GaN)/AlN/GaN heterostructures
    (Wiley, 2012-02-27) Bayrakli, A.; Arslan, E.; Firat, T.; Ozcan, S.; Kazar, O.; Cakmak, H.; Özbay, Ekmel
    We report the effect of a thin GaN (2?nm) interlayer on the magnetotransport properties of AlInN/AlN/GaN-based heterostructures. Two samples were prepared (Sample A: AlInN/AlN/GaN and sample B: AlInN/GaN/AlN/GaN). Van der Pauw and Hall measurements were performed in the 1.9300?K temperature range. While the Hall mobilities were similar at room temperature (RT), sample B had nearly twice as large Hall mobility as sample A at the lowest temperature; 679 and 889?cm2/Vs at RT and 1460 and 3082?cm2/Vs at 1.9?K for samples A and B. At 1.910?K, the longitudinal magnetoresistance was measured up to 9?T, in turn revealing Shubnikovde Haas (SdH) oscillations. The carrier concentration, effective mass and quantum mobility of the two-dimensional electron gas (2DEG) were determined from SdH oscillations. At 1.9?K, the 2DEG concentration of sample B was nearly seven times larger than of sample A (1.67 x 10(13)/cm2 vs. 0.24 x 10(13)/cm2). On the contrary, the quantum mobility was changed adversely nearly three times (sample B 2500?cm2/Vs and sample A 970?cm2/Vs). The increase of the 2DEG concentration was attributed to the existence of the GaN interlayer, which has strengthened the spontaneous polarization difference between the AlInN and GaN layers of the heterostructure. Hence, the stronger electric field at the 2DEG region bent the conduction band profile downwards and consequently the quantum mobility decreased due to the increased interface roughness scattering.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback