BUIR logo
Communities & Collections
All of BUIR
  • English
  • Türkçe
Log In
Please note that log in via username/password is only available to Repository staff.
Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Kartaloğlu, T."

Filter results by typing the first few letters
Now showing 1 - 6 of 6
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Femtosecond optical parametric oscillator based on periodically poled KTiOPO4
    (1998-01-01) Kartaloğlu, T.; Köprülü, K. G.; Aytür, O.; Sundheimer, M.; Risk, W. P.
    We report a femtosecond optical parametric oscillator based on a periodically poled KTiOPO4 crystal for which quasi-phase matching is achieved with a 24-μm poling period. The singly resonant parametric oscillator, synchronously pumped by a Ti:sapphire laser at a wavelength of 758 nm, generates a signal at 1200 nm and an idler at 2060 nm. The maximum signal power conversion efficiency of the device is 22% with a pump depletion of 69%. We tune the signal wavelength over a 200-nm band by changing the cavity length. In addition, pump wavelength tuning provides output tunability in the 1000-1235-nm range.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Femtosecond self-doubling optical parametric oscillator based on KTiOAsO4
    (IEEE, 2003) Kartaloğlu, T.; Aytür, O.
    We report a femtosecond intracavity-frequency-doubled optical parametric oscillator that employs a single KTiOAsO4 crystal for both parametric generation and frequency doubling. This device generates a yellow output beam at 575 nm with 39.4% power conversion efficiency when synchronously pumped by a femtosecond Ti:sapphire laser at a wavelength of 796 nm. An intracavity retarder is employed to alleviate temporal pulse overlap problems associated with group velocity mismatch inside the KTiOAsO4 crystal.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    High-speed GaAs-based resonant-cavity-enhanced 1.3 μm photodetector
    (American Institute of Physics., 2000) Kimukin, I.; Özbay, Ekmel; Bıyıklı, Necmi; Kartaloğlu, T.; Aytür, O.; Unlu, S.; Tuttle, G.
    We report GaAs-based high-speed, resonant-cavity-enhanced, Schottky barrier internal photoemission photodiodes operating at 1.3 μm. The devices were fabricated by using a microwave-compatible fabrication process. Resonance of the cavity was tuned to 1.3 μm and a nine-fold enhancement was achieved in quantum efficiency. The photodiode had an experimental setup limited temporal response of 16 ps, corresponding to a 3 dB bandwidth of 20 GHz. © 2000 American Institute of Physics.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Phase-matched self-doubling optical parametric oscillator
    (Optical Society of America, 1997-03-01) Kartaloğlu, T.; Köprülü, K. G.; Aytür, O.
    We report a synchronously pumped intracavity frequency-doubled optical parametric oscillator that employs a single KTiOPO4 crystal for both parametric generation and frequency doubling. Both nonlinear processes are phase matched for the same direction of propagation in the crystal. The parametric oscillator, pumped by a femtosecond Ti:sapphire laser at a wavelength of 745 nm, generates a green output beam at 540 nm with a 29% power conversion efficiency. Angle tuning in conjunction with pump wavelength tuning provides output tunability in the 530-585-nm range.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Simultaneous phase matching of optical parametric oscillation and second-harmonic generation in aperiodically poled lithium niobate
    (Optical Society of American (OSA), 2003) Kartaloğlu, T.; Figen, Z. G.; Aytür, O.
    We report a simple ad hoc method for designing an aperiodic grating structure to quasi-phase match two arbitrary second-order nonlinear processes simultaneously within the same electric-field-poled crystal. This method also allows the relative strength of the two processes to be adjusted freely, thereby enabling maximization of the overall conversion efficiency. We also report an experiment that is based on an aperiodically poled lithium niobate crystal that was designed by use of our method. In this crystal, parametric oscillation and second-harmonic generation are simultaneously phase matched for upconversion of a femtosecond Ti:sapphire laser to 570 nm. This self-doubling optical parametric oscillator provides an experimental verification of our design method. © 2003 Optical Society of America.
  • Loading...
    Thumbnail Image
    ItemOpen Access
    Single-crystal sum-frequency-generating optical parametric oscillator
    (Optical Society of America, 1999-09) Köprülü, K. G.; Kartaloğlu, T.; Dikmelik, Y.; Aytür, O.
    We report a synchronously pumped optical parametric oscillator that generates the sum frequency of the pump and the signal wavelengths. A single KTiOPO4 (KTP) crystal is used for both parametric generation and sum-frequency generation in which these two processes are simultaneously phase matched for the same direction of propagation. The parametric oscillator, pumped by a femtosecond Ti:sapphire laser at a wavelength of 827 nm, generates a blue output beam at 487 nm with 43% power-conversion efficiency. The polarization geometry of simultaneous phase matching requires rotation of the pump polarization before the cavity. Adjusting the group delay between the two orthogonally polarized pump components to compensate for the group-velocity mismatch in the KTP crystal increases the photon-conversion efficiency more than threefold. Angle tuning in conjunction with pump wavelength tuning provides output tunability in the 484–512-nm range. A plane-wave model that takes group-velocity mismatch into account is in good agreement with our experimental results.

About the University

  • Academics
  • Research
  • Library
  • Students
  • Stars
  • Moodle
  • WebMail

Using the Library

  • Collections overview
  • Borrow, renew, return
  • Connect from off campus
  • Interlibrary loan
  • Hours
  • Plan
  • Intranet (Staff Only)

Research Tools

  • EndNote
  • Grammarly
  • iThenticate
  • Mango Languages
  • Mendeley
  • Turnitin
  • Show more ..

Contact

  • Bilkent University
  • Main Campus Library
  • Phone: +90(312) 290-1298
  • Email: dspace@bilkent.edu.tr

Bilkent University Library © 2015-2025 BUIR

  • Privacy policy
  • Send Feedback