Browsing by Author "Jahja, Ermira"
Now showing 1 - 3 of 3
- Results Per Page
- Sort Options
Item Open Access Cholinergic receptor nicotinic alpha 5 (CHRNA5) RNAi is associated with cell cycle inhibition, apoptosis, DNA damage response and drug sensitivity in Breast cancer(Public Library of Science, 2018) Koker, Sahika Cingir; Jahja, Ermira; Shehwana, Huma; Keskus, Ayse Gokce; Konu, OzlenCholinergic Receptor Nicotinic Alpha 5 (CHRNA5) is an important susceptibility locus for nicotine addiction and lung cancer. Depletion of CHRNA5 has been associated with reduced cell viability, increased apoptosis and alterations in cellular motility in different cancers yet not in Breast cancer. Herein we first showed the expression of CHRNA5 was variable and positively correlated with the fraction of total genomic alterations in Breast cancer cell lines and tumors indicating its potential role in DNA damage response (DDR). Next, we demonstrated that silencing of CHRNA5 expression in MCF7 Breast cancer cell line by RNAi affected expression of genes involved in cytoskeleton, TP53 signaling, DNA synthesis and repair, cell cycle, and apoptosis. The transcription profile of CHRNA5 depleted MCF7 cells showed a significant positive correlation with that of A549 lung cancer cell line while exhibiting a negative association with the CHRNA5 co-expression profile obtained from Cancer Cell Line Encylopedia (CCLE). Moreover, it exhibited high similarities with published MCF7 expression profiles obtained from exposure to TP53 inducer nutlin-3a and topoisomerase inhibitors. We then demonstrated that CHRNA5 siRNA treatment reduced cell viability and DNA synthesis indicating G1 arrest while it significantly increased apoptotic sub-G1 cell population. Accordingly, we observed lower levels of phosphorylated RB (Ser807/811) and an increased BAX/BCL2 ratio in RNAi treated MCF7 cells. We also showed that CHRNA5 RNAi transcriptome correlated negatively with DDR relevant gene expression profile in Breast cancer gene expression datasets while the coexposure to topoisomerase inhibitors in the presence of CHRNA5 RNAi enhanced chemosensitivity potentially due to reduced DDR. CHRNA5 RNAi consistently lowered total CHEK1 mRNA and protein levels as well as phosphorylated CHEK1 (Ser345) in MCF7 cells. We also detected a significant positive correlation between the expression levels of CHRNA5 and CHEK1 in CCLE, TCGA and METABRIC Breast cancer datasets. Our study suggests CHRNA5 RNAi is associated with cell cycle inhibition, apoptosis as well as reduced DDR and increased drug sensitivity in Breast cancer yet future studies are warranted since dose- and cell line-specific differences exist in response to CHRNA5 depletion. Gene expression microarray data can be accessed from GEO database under the accession number GSE89333.Item Open Access CHRNA5 belongs to the secondary estrogen signaling network exhibiting prognostic significance in breast cancer(Springer, 2021-04) Shehwana, Huma; Keskus, Ayse Gokce; Ozdemir, E. Sila; Acikgöz, Azer Aylin; Biyik-Sit, Rumeysa; Cagnan, I.; Gunes, Damla; Jahja, Ermira; Cingir-Koker, Sahika; Olmezer, Gizem; Sucularli, Ceren; Konu, OzlenCholinergic signals can be important modulators of cellular signaling in cancer. We recently have shown that knockdown of nicotinic acetylcholine receptor subunit alpha 5, CHRNA5, diminishes the proliferative potential of breast cancer cells. However, modulation of CHRNA5 expression in the context of estrogen signaling and its prognostic implications in breast cancer remained unexplored.Item Unknown Investigation of novel RNAi and nanoparticle approaches for their anti-proliferative and drug-sensitizing effects in breast cancer(2017-08) Jahja, ErmiraDrug resistivity remains a major challenge in treating different cancer types. Among several strategies adapted to increase drug sensitivity in breast cancer cells, in the present thesis I studied an RNAi molecule targeting cholinergic receptor nicotinic alpha 5 subunit (CHRNA5) and a red-emitting oligomer nanoparticle, the two agents which I experimentally identified as negative regulators of cell proliferation. Cholinergic signaling is implicated in several different pathologies including cancer. Nicotinic acetylcholine receptors (nAChRs) are shown to be involved in regulation of cell proliferation, however they are mainly studied as mediators of nicotinic activity. CHRNA5 subunit has been shown to have roles in acetylcholine (ACh) production/stability, drug addiction and susceptibility to lung cancer. Few studies of lung and gastric cancers as well as high throughput RNAi screens show CHRNA5 as a modulator of cell proliferation. In the present study multiple CHRNA5 isoforms were cloned from MCF7 breast cancer cells (ER positive, TP53 positive) as in the case of lung cancer; moreover, a significant antimitotic effect of CHRNA5 RNAi application was demonstrated in MCF7 breast cancer cells. Similar effect of CHRNA5 silencing was only partially observed in BT-20 and MDA-MB-231 cells (ER negative, P53 mutant), yet in a seeding density-dependent manner. For the first time in literature the transcriptomic changes associated with CHRNA5 RNAi in the MCF7 cells were studied by microarrays from which differentially expressed gene lists were used to obtain the affected pathways. Additional assays confirmed the reduction in cell viability, DNA synthesis, G1 growth arrest, and changes in cytoskeleton complementing the microarray studies. Use of camptothecin (CPT) and doxorubicin (DOXO) in the absence or presence of CHRNA5 siRNA in MCF7, led to identification of CHRNA5’s role in drug sensitivity. Comparisons between CHRNA5 siRNA and public microarray datasets revealed common genes/networks between topoisomerase (TOPO)/cyclin-dependent kinase (CDK) inhibitors and CHRNA5 depletion profile in MCF7 cells. mRNA-miRNA network analysis of differentially expressed common gene sets between TOPO inhibitors and CHRNA5 RNAi treatment identified potential common regulatory miRNAs. In an independent study the anti-cancer as well as drug sensitivity associated effects of a novel CB7-capped, red-emitting conjugated oligomer nanoparticle (Red-CON) were characterized in MCF7 and MDA-MB-231 cells. Red-CON in its encapsulated form exhibited low toxicity and good efficacy as a drug delivery system. This nanoparticle formulation might serve well for future clinical and less toxic chemotherapeutic regimens.