Browsing by Author "Ho, K. M."
Now showing 1 - 12 of 12
- Results Per Page
- Sort Options
Item Open Access Defect structures in a layer-by-layer photonic band-gap crystal(American Physical Society, 1995) Özbay, Ekmel; Tuttle, G.; Sigalas, M.; Soukoulis, C. M.; Ho, K. M.We have experimentally and theoretically investigated defect structures that are incorporated into a three-dimensional layer-by-layer photonic band-gap crystal. The defects are formed by either adding or removing dielectric material to or from the crystal. For both cases, we observed localized modes with frequencies that lie within the forbidden band gap of the pure crystal. Relatively high peak transmission (10 dB below the incident signal), and high quality factors (2000) have been measured. These measurements were in good agreement with theoretical simulations. Theoretical calculations also predict very high (Q>106) quality factors for certain cavity structures. © 1995 The American Physical Society.Item Open Access Defect structures in metallic photonic crystals(A I P Publishing LLC, 1996-12-16) Özbay, Ekmel; Temelkuran, B.; Sigalas, M.; Tuttle, G.; Soukoulis, C. M.; Ho, K. M.We have investigated metallic photonic crystals built around a layer‐by‐layer geometry. Two different crystal structures (face‐centered‐tetragonal and tetragonal) were built and their properties were compared. We obtained rejection rates of 7–8 dB per layer from both metallic crystals. Defect modes created by removing rods resulted in high peak transmission (80%), and high quality factors (1740). Our measurements were in good agreement with theoretical simulations.Item Open Access Experimental demonstration of highly confined photonic crystal based waveguides(IEEE, 2001) Bayındır, Mehmet; Özbay, Ekmel; Temelkuran, B.; Sigalas, M. M.; Soukoulis, C. M.; Biswas, R.; Ho, K. M.The bending and guiding of the electromagnetic (EM) waves in highly confined waveguides was demonstrated. The electromagnetic waves were constructed by removing a single rod from a perfect three layer-by-layer photonic crystals. A layer-by-layer dielectric photonic crystal based on square shaped alumina rods was used with center-to-center separation of 1.12 cm. The results suggested the use of the layer-by-layer photonic crystal structure in the design of optoelectronic integrated circuits.Item Open Access Guiding, bending, and splitting of electromagnetic waves in highly confined photonic crystal waveguides(American Physical Society, 2001) Bayındır, Mehmet; Özbay, Ekmel; Temelkuran, B.; Sigalas, M. M.; Soukoulis, C. M.; Biswas, R.; Ho, K. M.We have experimentally demonstrated the guiding, bending, and splitting of electromagnetic (EM) waves in highly confined waveguides built around three-dimensional layer-by-layer photonic crystals by removing a single rod. Full transmission of the EM waves was observed for straight and bended waveguides. We also investigated the power splitter structures in which the input EM power could be efficiently divided into the output waveguide ports. The experimental results, dispersion relation and photon lifetime, were analyzed with a theory based on the tight-binding photon picture. Our results provide an important tool for designing photonic crystal based optoelectronic components.Item Open Access Highly directional resonant antennas built around photonic crystals(IEEE, 1999) Özbay, Ekmel; Temelkuran, Burak; Bayındır, Mehmet; Biswas, R.; Sigalas, M. M.; Tuttle, G.; Ho, K. M.We report a photonic crystal-based resonant antenna with a very high directivity and gain. The layer-by-layer dielectric photonic crystal we used in our experiments was designed to have a three dimensional band gap with a mid-gap frequency around 12 GHz. We used the output port of a microwave network analyzer and a monopole antenna to obtain EM waves. The input port of the network analyzer and a standard gain horn antenna were used to receive the radiated EM field from the monopole antenna. The receiver was kept free to rotate around the antenna. We investigated the radiation characteristics of this monopole antenna, which was inserted into the planar defect structures built around a photonic crystal that consisted of 20 layers. The planar defect was formed by separating the 8th and 9th layers of the structure. In order to suppress the radiation in the backward direction, we intentionally chose one of the mirrors of the cavity to have a higher reflectivity (/spl sim/18-20 dB) than the front mirror.Item Open Access Laser-micromachined millimeter-wave photonic band-gap cavity structures(American Institute of Physics, 1995) Özbay, Ekmel; Tuttle, G.; McCalmont, J. S.; Sigalas, M.; Biswas, R.; Soukoulis, C. M.; Ho, K. M.We have used laser-micromachined alumina substrates to build a three-dimensional photonic band-gap crystal. The rod-based structure has a three-dimensional full photonic band gap between 90 and 100 GHz. The high resistivity of alumina results in a typical attenuation rate of 15 dB per unit cell within the band gap. By removing material, we have built defects which can be used as millimeter-wave cavity structures. The resulting quality ~Q! factors of the millimeter-wave cavity structures were as high as 1000 with a peak transmission of 10 dB below the incident signal. © 1995 American Institute of Physics.Item Open Access Photonic band gaps with layer-by-layer double-etched structures(A I P Publishing LLC, 1996-09-03) Biswas, R.; Özbay, Ekmel; Ho, K. M.Periodic layer‐by‐layer dielectric structures with full three‐dimensional photonic band gaps have been designed and fabricated. In contrast to previous layer‐by‐layer structures the rods in each successive layer are at an angle of 70.5° to each other, achieved by etching both sides of a silicon wafer. Photonic band‐structure calculations are utilized to optimize the photonic band gap by varying the structural geometry. The structure has been fabricated by double etching Si wafers producing millimeter wavephotonic band gaps between 300 and 500 GHz, in excellent agreement with band calculations. Overetching this structure produces a multiply connected geometry and increases both the size and frequency of the photonic band gap, in very good agreement with experimental measurements. This new robust double‐etched structure doubles the frequency possible from a single Si wafer, and can be scaled to produced band gaps at higher frequencies. © 1996 American Institute of PhysicsItem Open Access Photonic crystal-based resonant antenna with a very high directivity(American Institute of Physics, 2000-09-24) Temelkuran, B.; Bayındır, Mehmet; Özbay, Ekmel; Biswas, R.; Sigalas, M. M.; Tuttle, G.; Ho, K. M.We investigate the radiation properties of an antenna that was formed by a hybrid combination of a monopole radiation source and a cavity built around a dielectric layer-by-layer three-dimensional photonic crystal. We measured a maximum directivity of 310, and a power enhancement of 180 at the resonant frequency of the cavity. We observed that the antenna has a narrow bandwidth determined by the cavity, where the resonant frequency can be tuned within the band gap of the photonic crystal. The measured radiation patterns agree well with our theoretical results. (C) 2000 American Institute of PhysicsItem Open Access Photonic-crystal-based resonant-cavity-enhanced detectors(IEEE, 1998) Temelkuran, Burak; Özbay, Ekmel; Kavanaugh, J. P.; Tuttle, G.; Ho, K. M.A layer-by-layer three-dimensional photonic crystal, with a full photonic bandgap (PBG) in all directions is proposed. The electrical fields in the cavities of this crystal are usually enhanced, and by placing active devices such as resonant cavity enhanced (RCE) photodetectors and light emitting diodes. The RCE effect is demonstrated by placing microwave detectors within localized modes of photonic crystal, along with a monopole antenna. A network analyzer measured the enhanced field. Such RCE detectors are more sensitive and efficient as compared to conventional detectors, and can be used for various applications where sensitivity and efficiency are important parameters.Item Open Access Reflection properties and defect formation in metallic photonic crystals(IEEE, 1998-05) Özbay, Ekmel; Temelkuran, Burak; Sigalas, M.; Tuttle, G.; Soukoulis, C. M.; Ho, K. M.The reflection properties of layer-by-layer metallic photonic crystals were investigated using metallic photonic crystals with simple-tetragonal (st) structure. The observed properties were used to predict defect formation in these crystals. The reflection and transmission amplitude characteristics were measured by a network analyzer and standard gain horn antennas. Transformation matrix method was employed for the theoretical simulations.Item Open Access Reflection properties of metallic photonic crystals(1998) Temelkuran, B.; Özbay, Ekmel; Sigalas, M.; Tuttle, G.; Soukoulis, C. M.; Ho, K. M.We measured reflection-magnitude and reflection-phase properties of metallic photonic crystals. The experimental results are in good agreement with the theoretical calculations. We converted the reflection-phase information to an effective penetration depth of the electromagnetic waves into the photonic crystal. This information was then used to predict resonance frequencies of defect structures. A symmetric resonant cavity was built, and an experimental set-up limited reflection magnitude of 80 dB below the incident signal was observed at resonance frequency.Item Open Access Resonant cavity enhanced detectors embedded in photonic crystals(American Institute of Physics, 1998) Temelkuran, B.; Özbay, Ekmel; Kavanaugh, J. P.; Tuttle, G.; Ho, K. M.We report a resonant cavity enhanced (RCE) detector built around a three-dimensional photonic band gap crystal. The RCE detector was built by placing a monopole antenna within the localized modes of planar and boxlike defectstructures. The enhanced electric field around these defectstructures were then measured by a microwave detector and a network analyzer. We measured a power enhancement factor of 3450 for planar cavity structures. A Fabry–Perot cavity model was used to understand and predict resonant cavity enhancement in this structure. The tuning bandwidth of the RCE detector extends from 10.5 to 12.8 GHz, which corresponds to the full photonic band gap by the crystal. These RCE detectors have increased sensitivity and efficiency when compared to conventional detectors, and can be used for various applications. © 1998 American Institute of Physics