Browsing by Author "Gao, Y."
Now showing 1 - 20 of 30
- Results Per Page
- Sort Options
Item Open Access AC-driven, color-and brightness-tunable organic light-emitting diodes constructed from an electron only device(2013) Zhao, Y.; Chen, R.; Gao, Y.; Leck, K.S.; Yang X.; Liu, S.; Abiyasa, A.P.; Divayana, Y.; Mutlugun, E.; Tan, S.T.; Sun H.; Demir, Hilmi Volkan; Sun X.W.In this paper, a color- and brightness-tunable organic light-emitting diode (OLED) is reported. This OLED was realized by inserting a charge generation layer into an electron only device to form an n-i-p-i-n structure. It is shown that, by changing the polarity of applied voltage, only the p-i-n junction operated under positive bias can emit light and, by applying an AC voltage, emission from both junctions was realized. It is also shown that, by using a combination of blue- and red-emiting layers in two p-i-n junctions, both the color and brightness of the resulting white OLED can be tuned independently by changing the positive and negative amplitudes of the AC voltage. © 2013 Elsevier B.V. All rights reserved.Item Open Access Anisotropic stimulated emission from aligned CdSe/CdS dot-in-rods(IEEE, 2014-10) Gao, Y.; Ta, V. D.; Zhao, X.; Wang, Y.; Chen, R.; Zhao, Y.; Dang, C.; Sun, X.; Sun, H.; Demir, Hilmi VolkanAnisotropic optical properties of CdSe/CdS dot-in-rods loaded in a capillary tube are demonstrated, suggesting nanorods' alignment with a microfluidic approach. Polarized emissions from photoluminescence and whispering gallery mode lasing show promising applications for lighting and displays. © 2014 IEEE.Item Open Access Azimuthally polarized, circular colloidal quantum dot laser beam enabled by a concentric grating(American Chemical Society, 2016) Gao, Y.; Tobing, L. Y. M.; Kiffer, A.; Zhang, D. H.; Dang C.; Demir, Hilmi VolkanSince optical gain was observed from colloidal quantum dots (CQDs), research on CQD lasing has been focused on the CQDs themselves as gain materials and their coupling with optical resonators. Combining the advantages of a CQD gain medium and optical microcavity in a laser device is desirable. Here, we show concentric circular Bragg gratings intimately incorporating CdSe/CdZnS/ZnS gradient shell CQDs. Because of the strong circularly symmetric optical confinement in two dimensions, the output beam CQD-based circular grating distributed feedback laser is found to be highly spatially coherent and azimuthally polarized with a donut-like cross section. We also observe the strong modification of the photoluminescence spectrum by the grating structures, which is associated with modification of optical density of states. This effect confirmed the high quality of the resonator that we fabricated and the spectral overlap between the optical transitions of the emitter and resonance of the cavity. Single mode lasing has been achieved under a quasi-continuous pumping regime, while the position of the lasing mode can be conveniently tuned via adjusting the thickness of the CQD layer. Moreover, a unidirectional output beam can be observed as a bright circular spot on a screen without any collimation optics, presenting a direct proof of its high spatial coherence.Item Open Access Blue liquid lasers from solution of CdZnS/ZnS ternary alloy quantum dots with quasi ‐ continuous pumping(Wiley - VCH Verlag GmbH & Co. KGaA, 2015) Wang Y.; Leck K.S.; Ta, V. D.; Chen R.; Nalla, V.; Gao, Y.; He T.; Demir, Hilmi Volkan; Sun, H.A blue (ca. 440 nm) liquid laser with an ultra‐low threshold through which quasi‐continuous wave pumping is accessible is achieved by engineering unconventional ternary CdZnS/ZnS alloyed‐core/shell QDs. Such an achievement is enabled by exploiting the novel gain media with minimal defects, suppressed Auger recombination, and large gain cross‐section in combination with high‐quality‐factor whispering gallery mode resonators.Item Open Access Colloidal quantum dot light-emitting diodes employing phosphorescent small organic molecules as efficient exciton harvesters(American Chemical Society, 2014) Mutlugun, E.; Guzelturk, B.; Abiyasa, A. P.; Gao, Y.; Sun X. W.; Demir, Hilmi VolkanNonradiative energy transfer (NRET) is an alternative excitation mechanism in colloidal quantum dot (QD) based electroluminescent devices (QLEDs). Here, we develop hybrid highly spectrally pure QLEDs that facilitate energy transfer pumping via NRET from a phosphorescent small organic molecule-codoped charge transport layer to the adjacent QDs. A partially codoped exciton funnelling electron transport layer is proposed and optimized for enhanced QLED performance while exhibiting very high color purity of 99%. These energy transfer pumped hybrid QLEDs demonstrate a 6-fold enhancement factor in the external quantum efficiency over the conventional QLED structure, in which energy transfer pumping is intrinsically weak.Item Open Access Coreless fiber‐based whispering‐gallery‐mode assisted lasing from colloidal quantum well solids(Wiley-VCH Verlag, 2020-01) Sak, Mustafa; Taghipour, Nima; Delikanlı, Savaş; Shendre, S.; Tanrıöver, İbrahim; Gao, Y.; Yu, J.; Yanyan, Z.; Yoo, S.; Dang, C.; Demir, Hilmi Volkan; Foroutan, SinaWhispering gallery mode (WGM) resonators are shown to hold great promise to achieve high‐performance lasing using colloidal semiconductor nanocrystals (NCs) in solution phase. However, the low packing density of such colloidal gain media in the solution phase results in increased lasing thresholds and poor lasing stability in these WGM lasers. To address these issues, here optical gain in colloidal quantum wells (CQWs) is proposed and shown in the form of high‐density close‐packed solid films constructed around a coreless fiber incorporating the resulting whispering gallery modes to induce gain and waveguiding modes of the fiber to funnel and collect light. In this work, a practical method is presented to produce the first CQW‐WGM laser using an optical fiber as the WGM cavity platform operating at low thresholds of ≈188 µJ cm−2 and ≈1.39 mJ cm−2 under one‐ and two‐photon absorption pumped, respectively, accompanied with a record low waveguide loss coefficient of ≈7 cm−1 and a high net modal gain coefficient of ≈485 cm−1. The spectral characteristics of the proposed CQW‐WGM resonator are supported with a numerical model of full electromagnetic solution. This unique CQW‐WGM cavity architecture offers new opportunities to achieve simple high‐performance optical resonators for colloidal lasers.Item Open Access Exciton energy recycling from ZnO defect levels: towards electrically driven hybrid quantum-dot white light-emitting-diodes(Royal Society of Chemistry, 2016) Zhao, X.; Liu W.; Chen R.; Gao, Y.; Zhu B.; Demir, Hilmi Volkan; Wang, S.; Sun, H.An electrically driven quantum-dot hybrid white light-emitting diode is fabricated via spin coating CdSe quantum dots onto a GaN/ZnO nanorod matrix. For the first time, quantum dots are excited by fluorescence resonance energy transfer from the carriers trapped at surface defect levels. The prototype device exhibits achromatic emission, with a chromaticity coordinate of (0.327, 0.330), and correlated color temperature similar to sunlight. © 2016 The Royal Society of Chemistry.Item Open Access Giant alloyed hot injection shells enable ultralow optical gain threshold in colloidal quantum wells(American Chemical Society, 2019) Altıntaş, Yemliha; Güngör, Kıvanç; Gao, Y.; Sak, Mustafa; Quliyeva, Ulviyya; Bappi, G.; Mutlugün, Evren; Sargent, E. H.; Demir, Hilmi VolkanAs an attractive materials system for high-performance optoelectronics, colloidal nanoplatelets (NPLs) benefit from atomic-level precision in thickness, minimizing emission inhomogeneous broadening. Much progress has been made to enhance their photoluminescence quantum yield (PLQY) and photostability. However, to date, layer-by-layer growth of shells at room temperature has resulted in defects that limit PLQY and thus curtail the performance of NPLs as an optical gain medium. Here, we introduce a hot-injection method growing giant alloyed shells using an approach that reduces core/shell lattice mismatch and suppresses Auger recombination. Near-unity PLQY is achieved with a narrow full-width-at-half-maximum (20 nm), accompanied by emission tunability (from 610 to 650 nm). The biexciton lifetime exceeds 1 ns, an order of magnitude longer than in conventional colloidal quantum dots (CQDs). Reduced Auger recombination enables record-low amplified spontaneous emission threshold of 2.4 μJ cm–2under one-photon pumping. This is lower by a factor of 2.5 than the best previously reported value in nanocrystals (6 μJ cm–2 for CdSe/CdS NPLs). Here, we also report single-mode lasing operation with a 0.55 mJ cm–2 threshold under two-photoexcitation, which is also the best among nanocrystals (compared to 0.76 mJ cm–2 from CdSe/CdS CQDs in the Fabry–Pérot cavity). These findings indicate that hot-injection growth of thick alloyed shells makes ultrahigh performance NPLs.Item Unknown A global reference for human genetic variation(Nature Publishing Group, 2015) Auton, A.; Abecasis, G. R.; Altshuler, D. M.; Durbin, R. M.; Bentley, D. R.; Chakravarti, A.; Clark, A. G.; Donnelly, P.; Eichler, E. E.; Flicek, P.; Gabriel, S. B.; Gibbs, R. A.; Green, E. D.; Hurles, M. E.; Knoppers, B. M.; Korbel, J. O.; Lander, E. S.; Lee, C.; Lehrach, H.; Mardis, E. R.; Marth, G. T.; McVean, G. A.; Nickerson, D. A.; Schmidt, J. P.; Sherry, S. T.; Wang, J.; Wilson, R. K.; Boerwinkle, E.; Doddapaneni, H.; Han, Y.; Korchina, V.; Kovar, C.; Lee, S.; Muzny, D.; Reid, J. G.; Zhu, Y.; Chang, Y.; Feng, Q.; Fang, X.; Guo, X.; Jian, M.; Jiang, H.; Jin, X.; Lan, T.; Li, G.; Li, J.; Li, Y.; Liu, S.; Liu, X.; Lu, Y.; Ma, X.; Tang, M.; Wang, B.; Wang, G.; Wu, H.; Wu, R.; Xu, X.; Yin, Y.; Zhang, D.; Zhang, W.; Zhao, J.; Zhao, M.; Zheng, X.; Gupta, N.; Gharani, N.; Toji, L. H.; Gerry, N. P.; Resch, A. M.; Barker, J.; Clarke, L.; Gil, L.; Hunt, S. E.; Kelman, G.; Kulesha, E.; Leinonen, R.; McLaren, W. M.; Radhakrishnan, R.; Roa, A.; Smirnov, D.; Smith, R. E.; Streeter, I.; Thormann, A.; Toneva, I.; Vaughan, B.; Zheng-Bradley, X.; Grocock, R.; Humphray, S.; James, T.; Kingsbury, Z.; Sudbrak, R.; Albrecht, M. W.; Amstislavskiy, V. S.; Borodina, T. A.; Lienhard, M.; Mertes, F.; Sultan, M.; Timmermann, B.; Yaspo, Marie-Laure; Fulton, L.; Ananiev, V.; Belaia, Z.; Beloslyudtsev, D.; Bouk, N.; Chen, C.; Church, D.; Cohen, R.; Cook, C.; Garner, J.; Hefferon, T.; Kimelman, M.; Liu, C.; Lopez, J.; Meric, P.; O'Sullivan, C.; Ostapchuk, Y.; Phan, L.; Ponomarov, S.; Schneider, V.; Shekhtman, E.; Sirotkin, K.; Slotta, D.; Zhang, H.; Balasubramaniam, S.; Burton, J.; Danecek, P.; Keane, T. M.; Kolb-Kokocinski, A.; McCarthy, S.; Stalker, J.; Quail, M.; Davies, C. J.; Gollub, J.; Webster, T.; Wong, B.; Zhan, Y.; Campbell, C. L.; Kong, Y.; Marcketta, A.; Yu, F.; Antunes, L.; Bainbridge, M.; Sabo, A.; Huang, Z.; Coin, L. J. M.; Fang, L.; Li, Q.; Li, Z.; Lin, H.; Liu, B.; Luo, R.; Shao, H.; Xie, Y.; Ye, C.; Yu, C.; Zhang, F.; Zheng, H.; Zhu, H.; Alkan, C.; Dal, E.; Kahveci, F.; Garrison, E. P.; Kural, D.; Lee, W. P.; Leong, W. F.; Stromberg, M.; Ward, A. N.; Wu, J.; Zhang, M.; Daly, M. J.; DePristo, M. A.; Handsaker, R. E.; Banks, E.; Bhatia, G.; Del Angel, G.; Genovese, G.; Li, H.; Kashin, S.; McCarroll, S. A.; Nemesh, J. C.; Poplin, R. E.; Yoon, S. C.; Lihm, J.; Makarov, V.; Gottipati, S.; Keinan, A.; Rodriguez-Flores, J. L.; Rausch, T.; Fritz, M. H.; Stütz, A. M.; Beal, K.; Datta, A.; Herrero, J.; Ritchie, G. R. S.; Zerbino, D.; Sabeti, P. C.; Shlyakhter, I.; Schaffner, S. F.; Vitti, J.; Cooper, D. N.; Ball, E. V.; Stenson, P. D.; Barnes, B.; Bauer, M.; Cheetham, R. K.; Cox, A.; Eberle, M.; Kahn, S.; Murray, L.; Peden, J.; Shaw, R.; Kenny, E. E.; Batzer, M. A.; Konkel, M. K.; Walker, J. A.; MacArthur, D. G.; Lek, M.; Herwig, R.; Ding, L.; Koboldt, D. C.; Larson, D.; Ye, K.; Gravel, S.; Swaroop, A.; Chew, E.; Lappalainen, T.; Erlich, Y.; Gymrek, M.; Willems, T. F.; Simpson, J. T.; Shriver, M. D.; Rosenfeld, J. A.; Bustamante, C. D.; Montgomery, S. B.; De La Vega, F. M.; Byrnes, J. K.; Carroll, A. W.; DeGorter, M. K.; Lacroute, P.; Maples, B. K.; Martin, A. R.; Moreno-Estrada, A.; Shringarpure, S. S.; Zakharia, F.; Halperin, E.; Baran, Y.; Cerveira, E.; Hwang, J.; Malhotra, A.; Plewczynski, D.; Radew, K.; Romanovitch, M.; Zhang, C.; Hyland, F. C. L.; Craig, D. W.; Christoforides, A.; Homer, N.; Izatt, T.; Kurdoglu, A. A.; Sinari, S. A.; Squire, K.; Xiao, C.; Sebat, J.; Antaki, D.; Gujral, M.; Noor, A.; Ye, K.; Burchard, E. G.; Hernandez, R. D.; Gignoux, C. R.; Haussler, D.; Katzman, S. J.; Kent, W. J.; Howie, B.; Ruiz-Linares, A.; Dermitzakis, E. T.; Devine, S. E.; Kang, H. M.; Kidd, J. M.; Blackwell, T.; Caron, S.; Chen, W.; Emery, S.; Fritsche, L.; Fuchsberger, C.; Jun, G.; Li, B.; Lyons, R.; Scheller, C.; Sidore, C.; Song, S.; Sliwerska, E.; Taliun, D.; Tan, A.; Welch, R.; Wing, M. K.; Zhan, X.; Awadalla, P.; Hodgkinson, A.; Li, Y.; Shi, X.; Quitadamo, A.; Lunter, G.; Marchini, J. L.; Myers, S.; Churchhouse, C.; Delaneau, O.; Gupta-Hinch, A.; Kretzschmar, W.; Iqbal, Z.; Mathieson, I.; Menelaou, A.; Rimmer, A.; Xifara, D. K.; Oleksyk, T. K.; Fu, Y.; Liu, X.; Xiong, M.; Jorde, L.; Witherspoon, D.; Xing, J.; Browning, B. L.; Browning, S. R.; Hormozdiari, F.; Sudmant, P. H.; Khurana, E.; Tyler-Smith, C.; Albers, C. A.; Ayub, Q.; Chen, Y.; Colonna, V.; Jostins, L.; Walter, K.; Xue, Y.; Gerstein, M. B.; Abyzov, A.; Balasubramanian, S.; Chen, J.; Clarke, D.; Fu, Y.; Harmanci, A. O.; Jin, M.; Lee, D.; Liu, J.; Mu, X. J.; Zhang, J.; Zhang, Y.; Hartl, C.; Shakir, K.; Degenhardt, J.; Meiers, S.; Raeder, B.; Casale, F. P.; Stegle, O.; Lameijer, E. W.; Hall, I.; Bafna, V.; Michaelson, J.; Gardner, E. J.; Mills, R. E.; Dayama, G.; Chen, K.; Fan, X.; Chong, Z.; Chen, T.; Chaisson, M. J.; Huddleston, J.; Malig, M.; Nelson, B. J.; Parrish, N. F.; Blackburne, B.; Lindsay, S. J.; Ning, Z.; Zhang, Y.; Lam, H.; Sisu, C.; Challis, D.; Evani, U. S.; Lu, J.; Nagaswamy, U.; Yu, J.; Li, W.; Habegger, L.; Yu, H.; Cunningham, F.; Dunham, I.; Lage, K.; Jespersen, J. B.; Horn, H.; Kim, D.; Desalle, R.; Narechania, A.; Sayres, M. A. W.; Mendez, F. L.; Poznik, G. D.; Underhill, P. A.; Mittelman, D.; Banerjee, R.; Cerezo, M.; Fitzgerald, T. W.; Louzada, S.; Massaia, A.; Yang, F.; Kalra, D.; Hale, W.; Dan, X.; Barnes, K. C.; Beiswanger, C.; Cai, H.; Cao, H.; Henn, B.; Jones, D.; Kaye, J. S.; Kent, A.; Kerasidou, A.; Mathias, R.; Ossorio, P. N.; Parker, M.; Rotimi, C. N.; Royal, C. D.; Sandoval, K.; Su, Y.; Tian, Z.; Tishkoff, S.; Via, M.; Wang, Y.; Yang, H.; Yang, L.; Zhu, J.; Bodmer, W.; Bedoya, G.; Cai, Z.; Gao, Y.; Chu, J.; Peltonen, L.; Garcia-Montero, A.; Orfao, A.; Dutil, J.; Martinez-Cruzado, J. C.; Mathias, R. A.; Hennis, A.; Watson, H.; McKenzie, C.; Qadri, F.; LaRocque, R.; Deng, X.; Asogun, D.; Folarin, O.; Happi, C.; Omoniwa, O.; Stremlau, M.; Tariyal, R.; Jallow, M.; Joof, F. S.; Corrah, T.; Rockett, K.; Kwiatkowski, D.; Kooner, J.; Hien, T. T.; Dunstan, S. J.; ThuyHang, N.; Fonnie, R.; Garry, R.; Kanneh, L.; Moses, L.; Schieffelin, J.; Grant, D. S.; Gallo, C.; Poletti, G.; Saleheen, D.; Rasheed, A.; Brooks, L. D.; Felsenfeld, A. L.; McEwen, J. E.; Vaydylevich, Y.; Duncanson, A.; Dunn, M.; Schloss, J. A.The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies. © 2015 Macmillan Publishers Limited. All rights reserved.Item Unknown Green stimulated emission boosted by nonradiative resonant energy transfer from blue quantum dots(American Chemical Society, 2016) Gao, Y.; Yu, G.; Wang Y.; Dang C.; Sum, T. C.; Sun, H.; Demir, Hilmi VolkanThanks to their tunability and versatility, the colloidal quantum dots (CQDs) made of II-VI semiconductor compound offer the potential to bridge the "green gap" in conventional semiconductors. However, when the CQDs are pumped to much higher initial excitonic states compared to their bandgap, multiexciton interaction is enhanced, leading to a much higher stimulated emission threshold. Here, to circumvent this drawback, for the first time, we show a fully colloidal gain in green enabled by a partially indirect pumping approach assisted by Förster resonance energy transfer process. By introducing the blue CQDs as exciton donors, the lasing threshold of the green CQDs, is reduced dramatically. The blue CQDs thus serve as an energy-transferring buffer medium to reduce excitation energy from pumping photons in a controlled way by injecting photoinduced excitons into green CQDs. Our newly developed colloidal pumping scheme could enable efficient CQD lasers of full visible colors by a single pump source and cascaded exciton transfer. This would potentially pave the way for an efficient multicolor laser for lighting and display applications.Item Unknown High brightness formamidinium lead bromide perovskite nanocrystal light emitting devices(Nature Publishing Group, 2016) Perumal, A.; Shendre, S.; Li, M.; Tay, Y. K. E.; Sharma, V. K.; Chen, S.; Wei, Z.; Liu, Q.; Gao, Y.; Buenconsejo, P. J. S.; Tan S.T.; Gan, C. L.; Xiong, Q.; Sum, T. C.; Demir, Hilmi VolkanFormamidinium lead halide (FAPbX3) has attracted greater attention and is more prominent recently in photovoltaic devices due to its broad absorption and higher thermal stability in comparison to more popular methylammonium lead halide MAPbX3. Herein, a simple and highly reproducible room temperature synthesis of device grade high quality formamidinium lead bromide CH(NH2)2 PbBr3 (FAPbBr3) colloidal nanocrystals (NC) having high photoluminescence quantum efficiency (PLQE) of 55-65% is reported. In addition, we demonstrate high brightness perovskite light emitting device (Pe-LED) with these FAPbBr3 perovskite NC thin film using 2,2′,2″-(1,3,5-Benzinetriyl)-tris(1-phenyl-1-H-benzimidazole) commonly known as TPBi and 4,6-Bis(3,5-di(pyridin-3-yl)phenyl)-2-methylpyrimidine (B3PYMPM) as electron transport layers (ETL). The Pe-LED device with B3PYMPM as ETL has bright electroluminescence of up to 2714 cd/m2, while the Pe-LED device with TPBi as ETL has higher peak luminous efficiency of 6.4 cd/A and peak luminous power efficiency of 5.7 lm/W. To our knowledge this is the first report on high brightness light emitting device based on CH(NH2)2 PbBr3 widely known as FAPbBr3 nanocrystals in literature. © The Author(s) 2016.Item Unknown Highly flexible, electrically driven, top-emitting, quantum dot light-emitting stickers(American Chemical Society, 2014) Yang X.; Mutlugun, E.; Dang, C.; Dev, K.; Gao, Y.; Tan, S.T.; Sun X.W.; Demir, Hilmi VolkanFlexible information displays are key elements in future optoelectronic devices. Quantum dot light-emitting diodes (QLEDs) with advantages in color quality, stability, and cost-effectiveness are emerging as a candidate for single-material, full color light sources. Despite the recent advances in QLED technology, making high-performance flexible QLEDs still remains a big challenge due to limited choices of proper materials and device architectures as well as poor mechanical stability. Here, we show highly efficient, large-area QLED tapes emitting in red, green, and blue (RGB) colors with top-emitting design and polyimide tapes as flexible substrates. The brightness and quantum efficiency are 20 000 cd/m2 and 4.03%, respectively, the highest values reported for flexible QLEDs. Besides the excellent electroluminescence performance, these QLED films are highly flexible and mechanically robust to use as electrically driven light-emitting stickers by placing on or removing from any curved surface, facilitating versatile LED applications. Our QLED tapes present a step toward practical quantum dot based platforms for high-performance flexible displays and solid-state lighting. © 2014 American Chemical Society.Item Unknown Highly flexible, full-color, top-emitting quantum dot light-emitting diode tapes(IEEE, 2013) Yang X.; Mutlugün, Evren; Gao, Y.; Zhao, Y.; Tan, S.T.; Sun X.W.; Demir, Hilmi VolkanWe report flexible tapes of high-performance, top-emitting, quantum dot based, light-emitting diodes (QLEDs) with multicolor emission, actively working even when flexed. The resulting QLED tapes reach a high peak luminance level of 19,265 cd/m2. © 2013 IEEE.Item Unknown Low-threshold lasing from colloidal CdSe/CdSeTe core/alloyed-crown type-II heteronanoplatelets(Royal Society of Chemistry, 2018) Gao, Y.; Li, M.; Delikanli S.; Zheng, H.; Liu, B.; Dang C.; Sum, T. C.; Demir, Hilmi VolkanColloidal type-II heterostructures are believed to be a promising solution-processed gain medium given their spatially separated electrons and holes for the suppression of Auger recombination and their wider emission tuning range from the visible to near-infrared region. Amplified spontaneous emission (ASE) was achieved from colloidal type-II core/shell nanocrystals several years ago. However, due to the limited charge-transfer (CT) interfacial states and minimal overlap of electron and hole wave functions, the ASE threshold has still been very high. Herein, we achieved ASE through type-II recombination at a lower threshold using CdSe/CdSeTe core/alloyed-crown nanoplatelets. Random lasing was also demonstrated in the film of these nanoplatelets under sub-ns laser-pumping. Through a detailed carrier dynamics investigation using femtosecond transient absorption, steady state, and time-resolved photoluminescence (PL) spectroscopies, we confirmed the type-II band alignment, and found that compared with normal CdSe/CdTe core/crown nanoplatelets (where no ASE/lasing was observed), CdSe/CdSeTe core/alloyed-crown nanoplatelets had a much higher PL quantum yield (75% vs. 31%), a ∼5-fold larger density of type-II charge-transfer states, a faster carrier transfer to interfaces (0.32 ps vs. 0.61 ps) and a slower Auger recombination lifetime (360 ps vs. 160 ps). Compared with CdSe/CdTe nanoplatelets, their counterparts with an alloyed crown boast a promoted charge transfer process, higher luminescence quantum yield, and smaller Auger rate, which results in their excellent application potential in solution-processed lasers and light-emitting devices.Item Unknown Manipulating optical properties of ZnO/Ga: ZnO core-shell nanorods via spatially tailoring electronic bandgap(Wiley-VCH Verlag, 2015) Zhao, X.; Gao, Y.; Wang Y.; Demir, Hilmi Volkan; Wang, S.; Sun, H.Enhancing optical and electrical properties of ZnO nanostructures via surface doping is demonstrated by Ga:ZnO–ZnO core–shell nanorods, which are grown by a genetic two-step method. Low-temperature photoluminescence and X-ray photoelectron spectroscopy prove the n + shell significantly suppresses the surface-related recombination by spatially modulating the electronic band structure. The study provides a significant physical insight in designing optoelectronic devices.Item Open Access Multicolor lasing prints(American Institute of Physics Inc., 2015) Ta V.D.; Yang, S.; Wang, Y.; Gao, Y.; He, T.; Chen, R.; Demir, Hilmi Volkan; Sun H.This work demonstrates mass production of printable multi-color lasing microarrays based on uniform hemispherical microcavities on a distributed Bragg reflector using inkjet technique. By embedding two different organic dyes into these prints, optically pumped whispering gallery mode microlasers with lasing wavelengths in green and red spectral ranges are realized. The spectral linewidth of the lasing modes is found as narrow as 0.11 nm. Interestingly, dual-color lasing emission in the ranges of 515-535 nm and 585-605 nm is simultaneously achieved by using two different dyes with certain ratios. Spectroscopic measurements elucidate the energy transfer process from the green dye (donor) to the red one (acceptor) with an energy transfer efficiency up to 80% in which the nonradiative Förster resonance energy transfer dominates. As such, the acceptor lasing in the presence of donor exhibits a significantly lower (∼2.5-fold) threshold compared with that of the pure acceptor lasing with the same concentration. © 2015 AIP Publishing LLC.Item Open Access Nanocrystal LEDs with enhanced external quantum efficiency enabled by the use of phosphorescent molecules(IEEE, 2013) Mutlugün, Evren; Abiyasa, A.P.; Güzeltürk, Burak; Gao, Y.; Leck, K.S.; Sun X.W.; Demir, Hilmi VolkanWe report efficiency enhancement in quantum dot (QD) based LEDs with the aid of excitonic energy transfer from co-doped TCTA:Ir(ppy)3 layer to CdSe/ZnS QDs while providing spectrally pure emission. © 2013 IEEE.Item Open Access Nanocrystal light-emitting diodes based on type II nanoplatelets(Elsevier BV, 2018) Liu, B.; Delikanli S.; Gao, Y.; Dede, D.; Gungor K.; Demir, Hilmi VolkanColloidal semiconductor nanoplatelets (NPLs) have recently emerged as a new family of semiconductor nanocrystals with distinctive structural and electronic properties originating from their atomically flat architecture. To date, type II NPLs have been demonstrated to possess great potential to optoelectronic applications, such as solar cells and lasers. Herein, nanocrystal light-emitting diodes (LEDs) based on type II NPLs have been developed. The photoluminescence quantum yield of these used type II NPL (CdSe/CdSe0.8Te0.2 core/crown) is close to 85%. By exploring an effective inverted structure with the dual hole transport layer, the NPL-LEDs exhibit i) a turn-on voltage of 1.9 V, ii) a maximum luminance of 34520 cd m−2, iii) an EQE of 3.57% and a PE of 9.44 lm W−1. Compared with previous NPL-based LEDs, the performance of our devices is remarkably enhanced. For example, the luminance is 350-fold higher than the best inverted NPL-based LED. The findings may not only represent a significant step for NPL-based LEDs, but also unlock a new opportunity that this class of type II NPLs materials are promising for developing high-performance LEDs.Item Open Access Nanosecond colloidal quantum dot lasers for sensing(Optical Society of America, 2014) Guilhabert, B.; Foucher, C.; Haughey, A M.; Mutlugun, E.; Gao, Y.; Herrnsdorf, J.; Sun, H. D.; Demir, Hilmi Volkan; Dawson, M. D.; Laurand, N.Low-threshold, gain switched colloidal quantum dot (CQD) distributed-feedback lasers operating in the nanosecond regime are reported and proposed for sensing applications for the first time to the authors' knowledge. The lasers are based on a mechanically-flexible polymeric, second order grating structure overcoated with a thin-film of CQD/PMMA composite. The threshold fluence of the resulting lasers is as low as 0.5 mJ=cm2 for a 610 nm emission and the typical linewidth is below 0.3 nm. The emission wavelength of the lasers can be set at the design stage and laser operation between 605 nm and 616 nm, while using the exact same CQD gain material, is shown. In addition, the potential of such CQD lasers for refractive index sensing in solution is demonstrated by immersion in water. © 2014 Optical Society of America.Item Open Access Near resonant third-order optical nonlinearities of colloidal InP/ZnS quantum dots(AIP Publishing, 2013) Wang, Y.; Yang, X.; He, T. C.; Gao, Y.; Demir, Hilmi Volkan; Sun, X. W.; Sun, H. D.We have investigated the third-order optical nonlinearities of high-quality colloidal InP/ZnS core-shell quantum dots (QDs) using Z-scan technique with femtosecond pulses. The two-photon absorption cross-sections as high as 6.2 × 103 GM are observed at 800 nm (non-resonant regime) in InP/ZnS QDs with diameter of 2.8 nm, which is even larger than those of CdSe, CdS, and CdTe QDs at similar sizes. Furthermore, both of the 2.2 nm and 2.8 nm-sized InP/ZnS QDs exhibit strong saturable absorption in near resonant regime, which is attributed to large exciton Bohr radius in this material. These results strongly suggest the promising potential of InP/ZnS QDs for widespread applications, especially in two-photon excited bio-imaging and saturable absorbing.