Browsing by Author "Güler, M. O."
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Item Open Access Biotin functionalized self‐assembled peptide nanofiber as an adjuvant for immunomodulatory response(Wiley-VCH Verlag, 2020-12) Demircan, Muhammed Burak; Tohumeken, Sehmus; Gündüz, Nuray; Khalily, Mohammad Aref; Tekinay, T.; Güler, M. O.; Tekinay, Ayşe B.Biotinylated peptide amphiphile (Biotin‐PA) nanofibers, are designed as a noncovalent binding location for antigens, which are adjuvants to enhance, accelerate, and prolong the immune response triggered by antigens. Presenting antigens on synthetic Biotin‐PA nanofibers generated a higher immune response than the free antigens delivered with a cytosine‐phosphate‐guanine oligodeoxynucleotides (CpG ODN) (TLR9 agonist) adjuvant. Antigen attached Biotin‐PA nanofibers trigger splenocytes to produce high levels of cytokines (IFN‐γ, IL‐12, TNF‐α, and IL‐6) and to exhibit a superior cross‐presentation of the antigen. Both Biotin‐PA nanofibers and CpG ODN induce a Th‐1‐biased IgG subclass response; however, delivering the antigen with Biotin‐PA nanofibers induce significantly greater production of total IgG and subclasses of IgG compared to delivering the antigen with CpG ODN. Contrary to CpG ODN, Biotin‐PA nanofibers also enhance antigen‐specific splenocyte proliferation and increase the proportion of the antigen‐specific CD8(+) T cells. Given their biodegradability and biocompatibility, Biotin‐PA nanofibers have a significant potential in immunoengineering applications as a biomaterial for the delivery of a diverse set of antigens derived from intracellular pathogens, emerging viral diseases such as COVID‐19, or cancer cells to induce humoral and cellular immune responses against the antigens.Item Open Access Collagen peptide presenting nanofibrous scaffold for intervertebral disc regeneration(American Chemical Society, 2019) Uysal, Özge; Arslan, Elif; Gülseren, Gülcihan; Kılınç, M. C.; Doğan, İ.; Özalp, H.; Çağlar, Y. Ş.; Güler, M. O.; Tekinay, Ayşe B.Lower back pain (LBP) is a prevalent spinal symptom at the lumbar region of the spine, which severely effects quality of life and constitutes the number one cause of occupational disability. Degeneration of the intervertebral disc (IVD) is one of the well-known causes contributing to the LBP. Therapeutic biomaterials inducing IVD regeneration are promising candidates for IVD degeneration treatments. Here, we demonstrate a collagen peptide presenting nanofiber scaffold to mimic the structure and function of the natural extracellular matrix of the tissue for IVD regeneration. The collagen peptide presenting nanofiber was designed by using a Pro-Hyp-Gly (POG) peptide sequence on a self-assembling peptide amphiphile molecule, which assembled into nanofibers forming scaffolds. Injection of collagen peptide presenting peptide nanofiber scaffold into the degenerated rabbit IVDs induced more glycosaminoglycan and collagen deposition compared to controls. Functional recovery of the tissue was evaluated by degeneration index score, where the bioactive scaffold was shown to provide functional recovery of the IVD degeneration. These results showed that the collagen peptide presenting nanofiber scaffold can prevent the progression of IVD degeneration and provide further functional recovery of the tissue.Item Open Access Improved solubility and bicompatibility pf peptide coated magnetic mesoporous silica nanoparticle theranostic agents(American Chemical Society, 2012) Yıldırım, A.; Sardan, M.; Genç, R.; Kılınç, M.; Sulek, S.; Tekinay, A. B.; Bayındır, Mehmet; Güler, M. O.Item Open Access N-cadherin mimetic peptide nanofiber system induces chondrogenic differentiation of mesenchymal stem cells(American Chemical Society, 2019) Çimenci, Çağla Eren; Uzunalli-Kurtuluş, G.; Çalışkan, Özüm S.; Güler, M. O.; Tekinay, Ayşe B.Cadherins are vital for cell-to-cell interactions during tissue growth, migration, and differentiation processes. Both biophysical and biochemical inputs are generated upon cell-to-cell adhesions, which determine the fate of the mesenchymal stem cells (MSCs). The effect of cadherin interactions on the MSC differentiation still remains elusive. Here we combined the N-Cadherin mimetic peptide (HAV-PA) with the self-assembling E-PA and the resultant N-cadherin mimetic peptide nanofibers promoted chondrogenic differentiation of MSCs in conjunction with chondrogenic factors as a synthetic extracellular matrix system. Self-assembly of the precursor peptide amphiphile molecules HAV-PA and E-PA enable the organization of HAV peptide residues in close proximity to the cell interaction site, forming a supramolecular N-cadherin-like system. These bioactive peptide nanofibers not only promoted viability and enhanced adhesion of MSCs but also augmented the expression of cartilage specific matrix components compared to the nonbioactive control nanofibers. Overall, the N-cadherin mimetic peptide nanofiber system facilitated MSC commitment into the chondrogenic lineage presenting an alternative bioactive platform for stem-cell-based cartilage regeneration.Item Open Access Supramolecular presentation of bioinstructive peptides on soft multilayered nanobiomaterials stimulates neurite outgrowth(Royal Society of Chemistry, 2023-06-13) Lopes, M.; Torrado, M.; Barth, D.; Santos, S. D.; Sever-Bahçekapılı, Melike; Tekinay, A. B.; Güler, M. O.; Cleymand, F.; Pêgo, A. P.; Borges, J.; Mano, J. F.Peptide amphiphiles (PAs) have emerged as effective molecular building blocks for creating self-assembling nanobiomaterials for multiple biomedical applications. Herein, we report a straightforward approach to assemble soft bioinstructive platforms to recreate the native neural extracellular matrix (ECM) aiming for neuronal regeneration based on the electrostatic-driven supramolecular presentation of laminin-derived IKVAV-containing self-assembling PA (IKVAV-PA) on biocompatible multilayered nanoassemblies. Spectroscopic and microscopic techniques show that the co-assembly of positively charged low-molecular-weight IKVAV-PA with oppositely charged high-molecular-weight hyaluronic acid (HA) triggers the formation of ordered β-sheet structures denoting a one-dimensional nanofibrous network. The successful functionalization of poly(L-lysine)/HA layer-by-layer nanofilms with an outer positively charged layer of self-assembling IKVAV-PA is demonstrated by the quartz crystal microbalance with dissipation monitoring and the nanofibrous morphological properties revealed by atomic force microscopy. The bioactive ECM-mimetic supramolecular nanofilms promote the enhancement of primary neuronal cells’ adhesion, viability, and morphology when compared to the PA without the IKVAV sequence and PA-free biopolymeric multilayered nanofilms, and stimulate neurite outgrowth. The nanofilms hold great promise as bioinstructive platforms for enabling the assembly of customized and robust multicomponent supramolecular biomaterials for neural tissue regeneration.